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Introduction
Black Hole Thermodynamics

Black hole (BH) quantities obey laws that resemble
thermodynamics, e.g. horizon area never decreases [BCH73].
BH radiate and have an entropy (Bekenstein-Hawking)[Haw75]:

SBH =
AH

4
,

Thermodynamic aspects of gravity are not limited to BH, but they
are manifested in any spacetime with horizons [Unr76][UW84].

I This result applies to apparent horizons in Cosmology as well
[GH77].
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The Smarr relation

It is the gravitational counterpart to the thermodynamic Euler
equation, relating intensive and extensive variables.

I For an ideal gas, for example, Euler relation reads,

U = TS − PV + µN.

In the context of general relativity, for Kerr-Newman black holes
[Sma73]:

M = 2TAH + 2ΩJ + ΦQ,

The Smarr Relation is a requirement that proposed
thermodynamical variables must fulfill.
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The Problem

Identification of thermodynamic quantities is based on analogies,
this can lead to ambiguities:

I For black holes, M can be internal energy [BCH73], or enthalpy
[KRT09].

I If a pressure is associated with Λ [KMT17], its conjugate variable
(volume) is not clearly associated with a physical volume.

I Some prescriptions lead to thermodynamically unstable potentials.

We want to define thermodynamic variables appropriately for
static black holes and study the associated Smarr Relation.
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How can we identify thermodynamic variables?

Conserved charges in asymptotically flat spacetimes[BCH73].
I There are issues concerning thermodynamic stability.

Possibility: variables defined on a finite region (quasilocal)
[Sza09].
Hamilton-Jacobi approach for Euclidean path integrals (Brown &
York [BYJ93b]).

I Thermodynamics can be connected to the canonical description of
a system.

I Provides directly a thermodynamic fundamental equation
(Entropy (state variables)).
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Hamilton-Jacobi method in Classical Mechanics

This method identifies momentum and energy directly from the
action.

S =

∫
dt
[
p

dx
dt
− H(x ,p, t)

]
=

∫ λ′′

λ′
dλ
[
pẋ − ṫH(x ,p, t)

]
The variation of this action is

δS = (e.o.m. terms) + pδx |λ′′
λ′ − Hδt |λ′′

λ′ .

Therefore, for the action evaluated on classical solutions:

p =
∂Scl

∂x
; E = Hcl = −∂Scl

∂t
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Brown-York Approach

Spacetime: M ' Σ× I, with I a closed interval in R.

γijdx idx j = −N2dt2 + σAB(dθA + V Adt)(dθB + V Bdt),
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Brown-York Approach

Partition function is evaluated in terms of path integrals on
spatially finite regions.

Z [ϕ, π] ∝
∫

D[ϕ, π] exp
(
−S(E)

grav [ϕ, π]
)

Variation of the on-shell action defines the thermodynamic
variables (Hamilton-Jacobi):

δScl =

∫
3B

d3z
√
−γπijδγij where πij =

2√
−γ

δSgrav

δγij
,

δScl =

∫
3B

d3z
√
σ

(
−εδN + jaδV a +

N
2

ssbδσab

)
.
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Brown-York Approach

For a static spacetime (V a = 0):

ε =
1

8π
k ; ja = 0,

sab =
1

8π

(
kab + (nµaµ − k)σab

)
For black holes, these variables satisfy a "first law" [BYJ93a]:

δS[ε, j , σ] ≈ δ
(

AH

4

)
=

∫
B

d2θ

[
βδ(
√
σε) + β

(√
σ

pab

2

)
δσab

]
,

where p is defined in terms of time integrals of sab and N.
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Spherically Symmetric case: Schwarzschild

In spherically symmetric static spacetimes we consider the metric

ds2 = −N(r)2dt2 + h(r)2dr2 + r2dΩ2.

Σ are hypersurfaces t = constant , whereas 3B is defined by
r = constant . Ignoring matter terms in the action:

ε =
1

4π

(
1
r
− 1

rh

)∣∣∣∣
r=R

,

p ≡ 1
2
σabsab =

1
8π

(
N ′

Nh
+

1
rh
− 1

r

)∣∣∣∣
r=R

.
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Spherically Symmetric case: Schwarzschild

Defining the quasilocal energy as E =
∫

B d2θ
√
σε, we find

T δS = δE + pδA.

The scaling behavior of these variables leads to a Quasilocal
Smarr Relation:

2TS = E + 2pA.

With the obtained quasilocal quantities, it is found that:

2TS =
1
N

[
1
2

R2 (N2)′

Nh

]
=

1
N

EKomar (R),

which can be verified by replacing N and h for the Schwarzschild
metric.
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Reissner-Nördstrom Spacetime

In this case we have a matter Lagrangian:

LM = − 1
16π

FµνFµν ,

Boundary terms of the Hamiltonian must be considered. This
is a general feature of this approach in presence of matter.
Variation of the on-shell action must be supplemented by a
Noether charge analysis to obtain the first law [Cre96]:

δS =

∫
B

d2θ
√
σβ
(
δε+ sABδσAB + ΦδΞ

)
,

where Φ is the electrostatic potential, and

Ξ =
1

4π
rbEb,
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Reissner-Nördstrom Spacetime

The electrostatic potential in this case is given by,

Φ(r) =
Q

N(r)

(
1
r
− 1

rH

)
,

Integration of the first law on the spherical quasilocal surface or
radius r leads to

T δS = δE + PδA + ΦδQ.

Therefore, the Quasilocal Smarr relation for
Reissner-Nordstrom black holes is:

2TS = E + 2PA + ΦQ.
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Reissner-Nördstrom Spacetime

The thermodynamic variables in this case are written as:

E = −r
1

h(r)
,

P =
1

8πh(r)

(
1
r

+
d
dr

[log N(r)]

)
,

T =
1

N(r)

2− 2M/rH

4πrH
,

A = 4πr2,

S =
AH

4
= πr2

H .
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Reissner-Nördstrom Spacetime

Inserting these variables into the Quasilocal Smarr Relation,
together with non-thermodynamic information: the definition
of rH and that N(r)h(r) = 1, leads to

2M
r2 −

2Q2

r3 =
d
dr

[N(r)2].

This equation can be integrated trivially to give

N2(r) = 1− 2M
r

+
Q2

r2 ,

Therefore, the Quasilocal Smarr Relation can be regarded as a
realization of Einstein equations.
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Remarks

The resulting Smarr Relations are independent of the explicit
metric, and could be regarded as a constraint between any
possible thermodynamic variables.
To recover Einstein equations, some non-thermodynamic
information must be supplied.
In cosmological settings, we will need to take into account
boundary terms associated to sources, together with the
Noether charge construction, to identify the microcanonical action.
Some sources are unable to satisfy the resulting Smarr relation,
this fact could provide thermodynamic criteria to filter out
models (such approach could be a quasilocal equivalent to
[BJNAN15]).
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