System-on-Chip Workshop 12-14 June, CERN

WELCOME!

https://indico.cern.ch/event/799275

System-on-Chip Workshop

This workshop wants to be a forum to exchange experience and ideas, to identify commonality and differences, to propose common solutions wherever applicable, and to point out issues that need follow up.

Interest Group "System-on-Chip for Electronics" → Mailing list: system-on-chip@cern.ch

Organisation of the Workshop

Organising Committee

- We wish you a warm WELCOME!
- If you have questions on the organisation of the workshop or on your presentations, etc. please contact any of us.
- You can also send and email to the organizers: <u>SoC-Workshop-Organisers@cern.ch</u> or if it is of general interest: <u>System-on-Chip@cern.ch</u>

Overview of the Workshop

	WED, June 12 Room 30/7-018	THU, June 13 Room 40/S2-B01	FRI, June 14 Room 40/S2-C01
Morning	Manufacturer Presentations 1	Tutorials & Presentations 1	Tutorials & Presentations 3
	Coffee/tea break	Coffee/tea break	Coffee/tea break
	Manufacturer presentations 2	Tutorials & Presentations 2	Tutorials & Presentations 4
	Lunch	Lunch	Lunch
Afternoon	Overview and Use Cases 1	Use Cases 3	System Aspects 1
	Tea/coffee break	Tea/coffee break	Tea/coffee break
	Use Cases 2	Use Cases 4	System Aspects 2

- Please have a look at <u>https://indico.cern.ch/event/799275</u>
- Note: use different rooms: WED: bldg. 30/7-18, THU&FRI: bldg. 40/Salle Bohr and Salle Curie.
- Rooms in bldg. 40 are limited to a capacity of 100 apologies! We will use Vidyo ...
- Coffee/tea is kindly offered by EP-ESE, EP-CMD and ATLAS.
- We will take minutes, in particular of discussions, which will be published later in Indico.
- Hope to have lively discussions ...

Motivation for the Workshop

Electronics Modules

Data Processing FPGAs

Many electronics modules for trigger and readout in particle physics experiments have a similar structure:

- Several high-end FPGAs for processing, usually 1 to 5.
- Many high-speed links for data input and output, usually ~10 to ~500 links of 1 to 28 GBits/s (planned) .
- Something for control ... a System-on-Chip

Control (send commands), **Configuration** (load data), **Monitoring** (collect data):

- Hardware related, e.g. settings and actual values of power, clock, optical chips, FPGAs, etc., usually using industry standard protocols like I2C, SPI, JTAG, etc.
- **Run control related**, i.e. related to physics/run (functionality implemented in firmware of FPGAs), e.g. control and status registers, memories, look-up tables, counters, physics data, etc.

Electronics Systems

Legacy VME Crate In the past, very popular - VME: FPGA VME FPGA VME VMEIF Hardware control: CANbus SBC Run Control FPGA **Run control**: Single-Board Computer (SBC) Internal GbEthernet Bus or VME bridge and PC **Detector Control** CANbus Timing Clocks Update Ports Today, many new projects use ATCA: Fabric Interface [Full Mesh] 8 diff. pairs each) Control is oriented towards GbEthernet: Base Interface [Ethernet Dual Star] (4 diff. pairs each) Hardware control: PMR Stor 8 Ring/Test Lines Blade \rightarrow IPMI \rightarrow shelf manager \rightarrow SCADA* 48VDC Power ATCA Backplane Central Fabric Switch Blades **Run control:** Via hub module and base interface, or directly to each ATCA blade ... \Rightarrow Need a new control strategy! *SCADA = Supervisory Control And Data Acquisition

ATCA Hardware Platform Management

System-on-Chip

System-on-Chip:

Processor system + programmable logic \Rightarrow "CPU and FPGA"

- Processor system (PS) = like CPU:
 - Currently all are multi-core ARM processors
 - Has memory and peripherals, e.g. GbEthernet, I2C, SPI, GPIO, etc.
 - Runs software: "bare-metal" application or operating system, e.g. Linux

• Programmable logic (PL) = like FPGA:

- Has logic cells, memory blocks, and I/O links, e.g. Multi-Gigabit Transceivers (MGTs)
- Implements real-time data logic, interfaces to the other processing FPGAs, can implement more peripherals, e.g. 10GbEthernet, etc.

→ Examples of SoCs:

Xilinx Zynq SoC, Xilinx Zynq UltraScale+ MPSoC, Intel Stratix 10 SoC

This definition of SoC is more restrictive than in Wikipedia

We will hear from the manufacturers during this morning's session

Use of System-on-Chip

- Interface between hardware and software
- Programmable Logic part of SoC very well known to hardware designers
- Processor System of SoC provides a lot of flexibility and integrates the electronics modules into the control network(s)
- Possibility to push more "intelligence" into the electronics modules
- Typical use cases for SoCs:
 - Interactive tools
 - Integration with Detector Control System for hardware control
 - Integration with Run Control System for operational control
 - Trigger processing
 - Readout of physics data
 - Physics-oriented calibration and monitoring tasks
 - Etc.

We will see many examples during the "Use cases" and "Tutorials&Presentations" sessions

System-on-Chip Workshop

Concerns and issues on use of SoCs:

- Hardware/firmware part:
 - Exchange of experience and of solutions:
 Can we provide a common repository of IP blocks?
 - Provide common hardware solutions:

Can we provide recommendation on the hardware choice? Is possible to build or purchase a common SoC mezzanine card for control?

- Software part: flexibility has a cost = support and maintenance
 - How to organise network, in particular, with many, o(100-1000), SoCs: Network switches, IP numbers, boot services, etc.
 - How to provide network security:

Technical control networks for experiments and beams have strict security requirements.

- Provide common software solutions:
 Common support for operating system, drivers, libraries, tools?
- Provide long-term maintenance:

Can a common SoC mezzanine card address this issue?

... and probably more. Your input is important!

Many of these issues will be discussed during the "System Aspects" sessions

Have a good workshop!