The Zynq MPSoC of the ATLAS L1Calo TREX

Victor Andrei
- KIP Heidelberg, Germany-

System-on-Chip Workshop, CERN, 13 June 2019
Overview

- L1Calo PreProcessor
- TREX module
- Usage of Zynq MPSoC on TREX
- Zynq MPSoC Development & Plans
L1Calo in Phase-I

- New Feature Extractor (FEX) processors
 - improved object-finding algorithms
- Digital super-cells from LAr
 - ≤ 12.8 Gbps optical links
- Analogue trigger-towers from Tile
 - Tile Rear Extension (TREX) modules in the PreProcessor
 - provide Tile digitised results to FEXes
 - maintain legacy trigger data path
 - replaced by digital Tile PreProcessor in Phase-II
The PreProcessor

8 VME crates [6 LAr + 2 Tile]

124 hardware-identical PPMs [~16 PPMs/crate]

Legacy PreProcessor Module (PPM) (2007)
The PreProcessor in Phase-I

2 VME crates [Tile]

32 PPMs + 32 TREXes

TREX – RTM in the ‘Tile’ crates [acts as physical extension of the ‘front’ PPM]
TREX Module

• 18-layer PCB [9U VME height]

• Kintex UltraScale FPGA [PREDATOR]
 – xcku115 (prototype), xcku085 (pre-production)
 – real-time, readout, control, monitoring

• Artix-7 FPGAs (4x) [XC7A35T] [DINOs]
 – LVDS fan-out

• Samtec FireFly Transceivers (6x)
 – four 12-chan transmitters to FEXes
 – one 4-chan bidirectional [out – readout; in – TTC]
 – one 12-chan receiver [optical loopback tests]

• PLLs, power managers, monitoring ADCs, etc.

• Zynq UltraScale+ MPSoC [XCZU2CG]
 – from pre-production only

13/06/2019 V. Andrei - TREX Zynq+ MPSoC
Zynq MPSoC on the TREX pre-production (v2)

• TREX v2 currently being produced
• Zynq US+ based SoM [System-on-Module]
 – commercial mezzanine [details below]
 – usage
 • slow-control
 • communication with DCS
 • board control & monitoring
 – interface to VME/RunControl
 • configuration/control, monitoring, debugging, etc.

TE0820-03-02CG-1EA [Trenz Electronic]
- Zynq UltraScale+ XCZU2CG-1SFVC784E
 - dual-core ARM Cortex-A53 APU (64-bit)
- 2 GB DDR4 SDRAM (32-bit)
- 128 MB QSPI Boot Flash, 4 GB eMMC
- Gigabit Ethernet transceiver PHY
- MAC address EEPROM (EUI-48)
- USB 2.0 transceiver
- Plug-on module (3x B2B connectors)
- All power supplies on board
- Size: 50x40 mm
- etc.
Zynq MPSoC – Slow-Control

• PL: retrieve periodically environmental parameters from the board
 – T, V, I, alarms, etc. [~200 pars from 16 devices]
 – one I2C bus, two masters [arbitration from VME/RunControl]
 • Zynq [default]
 • VME/PPM [testing/debugging only]
 – data stored locally
 • accessible from PS and VME

• PS: communicate with DCS
 – OPC UA Server & TCP/IP
 – send slow-control data
 • upon requests from Client

13/06/2019
V. Andrei - TREX Zynq+ MPSoC
Zynq MPSoC – Board Control & Monitoring

- Power off & on the board
 - when requested from DCS or VME
- Configure on-board devices
 - FPGAs
 - JTAG [via Xilinx Virtual Cable on PS]
 - Master SPI [from PL, via I2C]
 - PLLs [via I2C]
 - PL: two PLLs on TREX
 - PS: one PLL on Zynq SoM
 - Power Managers [PL, via I2C]
- Build monitoring data
 - logs, diagnostic histograms, etc.
 - mostly based on slow-control data
 - stored on external devices, e.g.:
 - SD card, USB Flash [via PS]
 - TREX on-board EEPROM [via PL]
Zynq MPSoC - Development

• PL design
 – well established
 – available development
 • interface to PPM/VME, I2C interface to on-board devices
 • (VME) register model
 • Makefile and Tcl scripts for automatic build [non-project mode]
 – in progress
 • I2C bus arbitration [Zynq vs VME]
 • local storage of slow-control data
 • XML register files
 – generate HDL include files & basic documentation [e.g. and/or: md/xlsx/pdf/…]
 – only a standalone PL design needed for initial tests of TREX v2 modules
 • slow-control functionality, board control & monitoring (all steered from VME)
 • bitstream → load via JTAG
 • fsbl → boot from QSPI/SD card
PS: OS + application software
 - development not yet started
 - Linux-based OS
 - start with Petalinux
 - Yocto + CentOS preferred
 - Software
 - OPC UA SRV
 - Xilinx Virtual Cable (XVC)
 - custom monitoring apps

Boot options (OS)
 - SD card
 - not very efficient when having to update the system → 32 TREQes
 - Net booting (TFTP) → preferred
 - get quickly the latest development builds [e.g. during commissioning phase]
 - hopefully possible/allowed
• Questions?