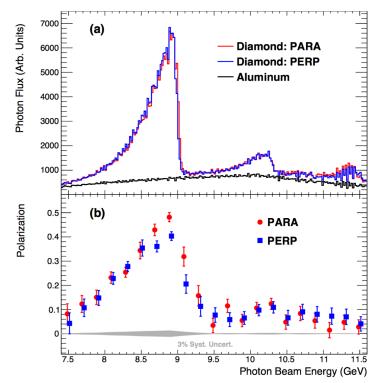
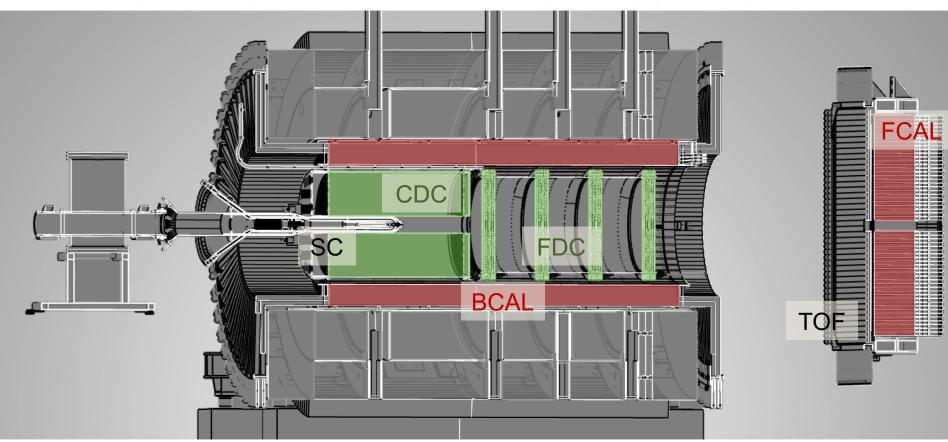


Introduction

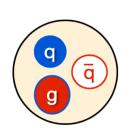

- Overview of Hall D/Gluex apparatus
- Selected results from GlueX/Hall D experiments:
 - searching for hybrid mesons
 - beam asymmetries
 - η decay via Primakoff reaction
- Near-threshold J/ψ photoproduction:
 - the experiment
 - proton gluonic distributions at high-x
 - search for LHCb pentaquarks
 - future expected results

Experiment	Description	PAC days
		$\operatorname{complete}$
GlueX-I	Spectroscopy of light and	80+40
	hybrid mesons (low intensity)	80+40
GlueX-II	Spectroscopy of hadrons with	220+
	strange quarks (high intensity)	
PrimEx-eta	Eta radiative decay width	79
		4 24
CPP	Charge pion polarizability	25
JEF	Rare eta decays	-
SRC	Short-range correlations	15
	with real photon beams	

Hall D Apparatus


- Photon beam from coherent Bremsstrahlung off thin diamond
- Photon energy tagged by scattered electron ~ 0.2% resolution
- Beam collimated at 75m, <35 μrad
- Intensity: ~ $2\ 10^7$ $5\ 10^7$ γ /sec above J/ ψ threshold (8.2 GeV) total ~68 pb⁻¹ in 2016-2017 runs (25% of total statistics up to date)
- Photons are linearly polarized ~ 40% at peak; polarization plane angle alternates from run to run: PERP, PARA

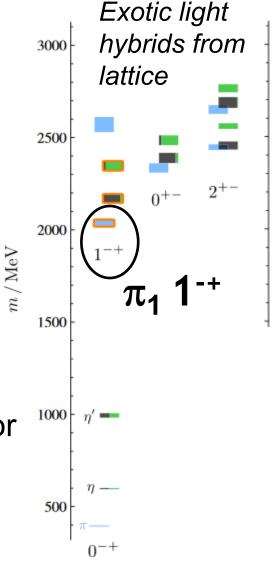
GlueX spectrometer


2T-solenoid, LH target

Tracking (FDC,CDC), Calorimetry (BCAL,FCAL), Timing (TOF,SC)

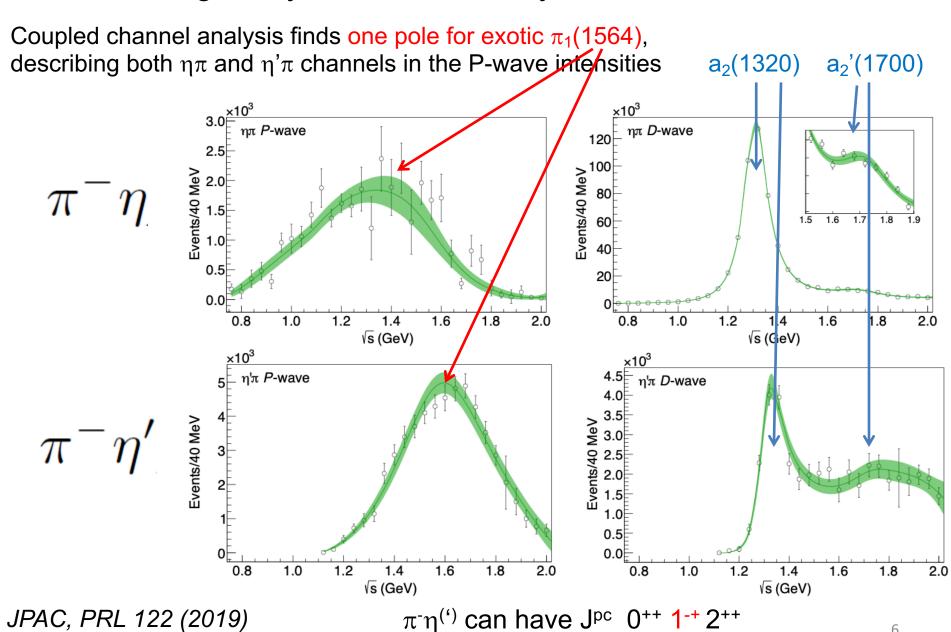
- Hermetic detector: 1 120° polar and full azimuthal acceptance
- Tracking: $\sigma_p/p \sim 1 5\%$
- Calorimetry: σ_E/E ~ 6%/√ E + 2%

Searching for light hybrid mesons (qqg)

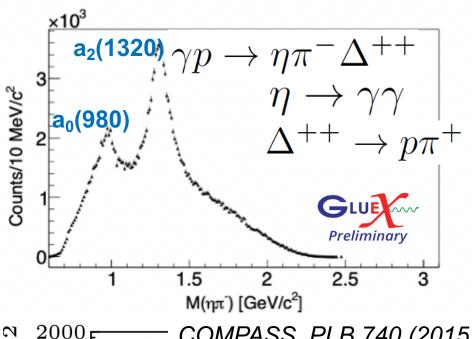

Hybrids with exotic quantum numbers (not allowed in $q\bar{q}$ model)

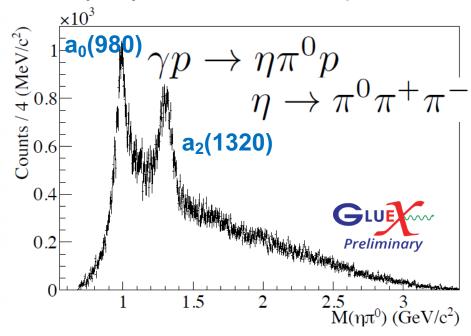
Experiment	p_{beam} , GeV	Reaction	Resonance
GAMS	32,38,100	$\pi^- p \to \pi^0 \eta n$	$\pi_1(1400)$
E852	18	$\pi^- p \to \pi^- \eta^{(\prime)} p$	$\pi_1(1400/1600)$
Crystal Barrel	Annihilation	$\bar{p}n \to \pi^-\pi^0\eta$	$\pi_1(1400)$
VES	37	$\pi^- p \to \pi^- \eta^{(\prime)} p$	$\pi_1(1600)$
COMPASS	190	$\pi^- p \to \pi^- \eta' p$	$\pi_1(1600)$
COMPASS	190	$\pi^- p \to \pi^- \eta p$	$\pi_1(1400)$

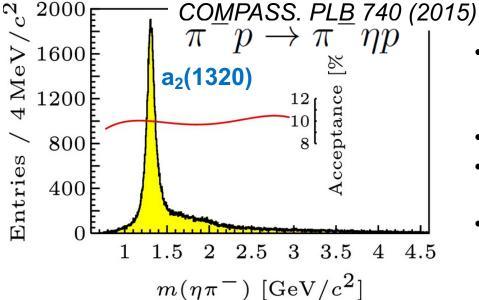
COMPASS: $\pi_1 \rightarrow \pi^- \eta^{(i)}$


COMPASS, PLB 740 (2015)

best evidence for exotic hybrid

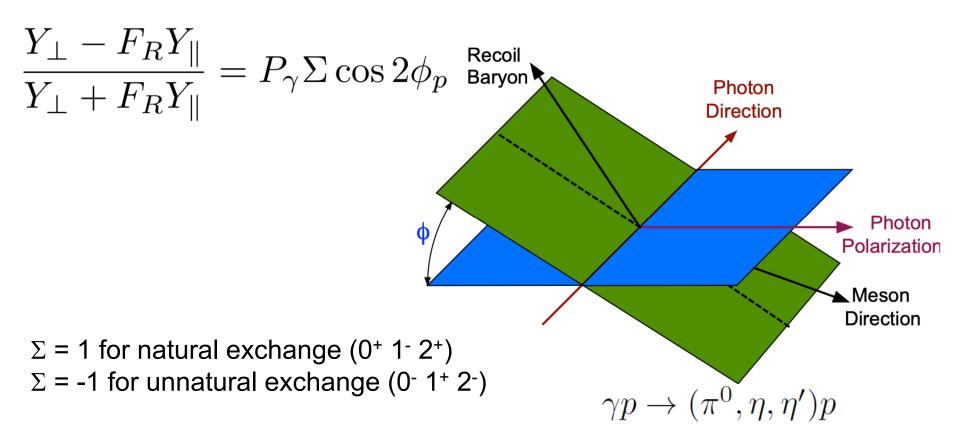

Dudek et al. PRD 88 (2013)


Searching for hybrids: JPAC analysis of COMPASS data

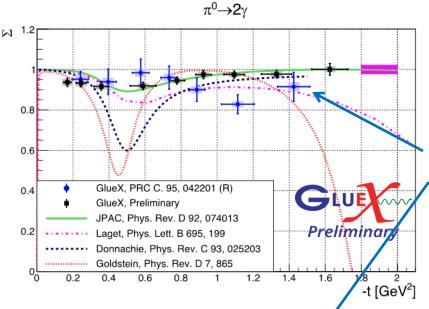


6

Searching for hybrids: GlueX $\eta \pi / \eta' \pi$ spectroscopy

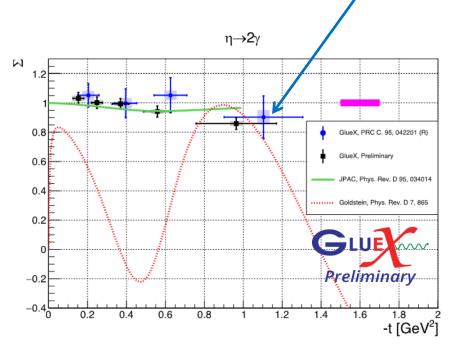


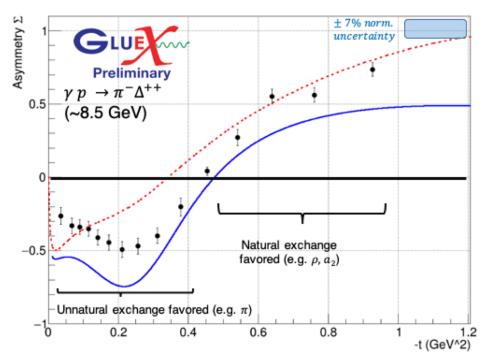
- With full statistics up to date, GlueX competitive with COMPASS for one channel
- Multiple channels studied in GlueX
 - Different production mechanism, different background
- GlueX linearly polarized photon beam important tool in understanding the $\eta\pi$ spectrum


Beam Asymmetry

$$Y(\phi) \sim (1 - P_{\gamma} \Sigma \cos 2(\phi_{p} - \phi_{\gamma}))$$

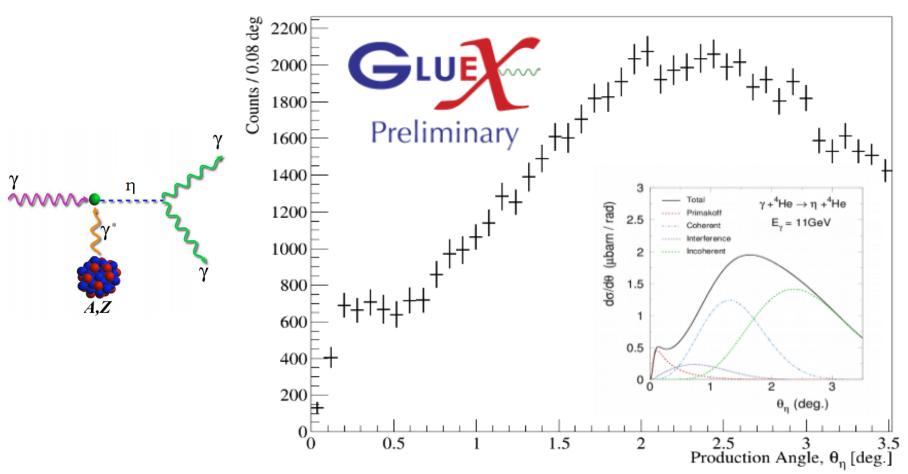
Alternating (run by run) the orientation of the polarization by 90°, the efficiency cancels in the asymmetry ratio:


Beam Asymmetry

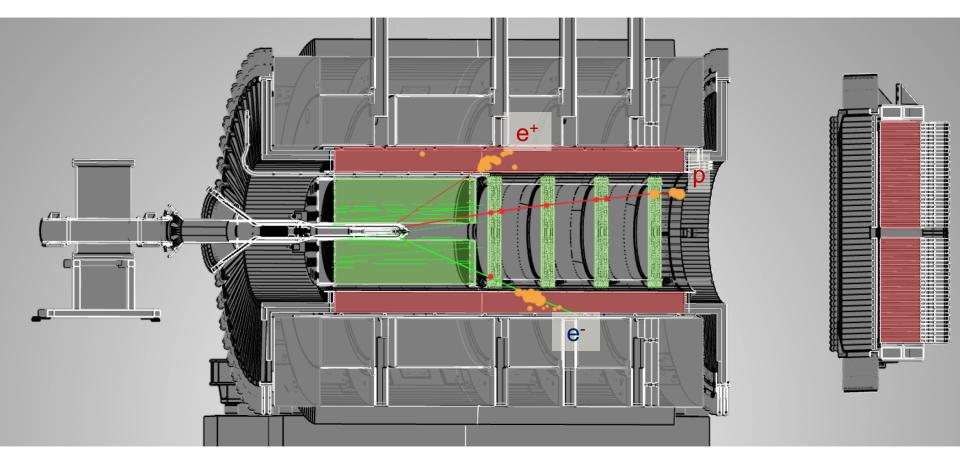


$$\gamma p \to (\pi^0, \eta, \eta') p$$

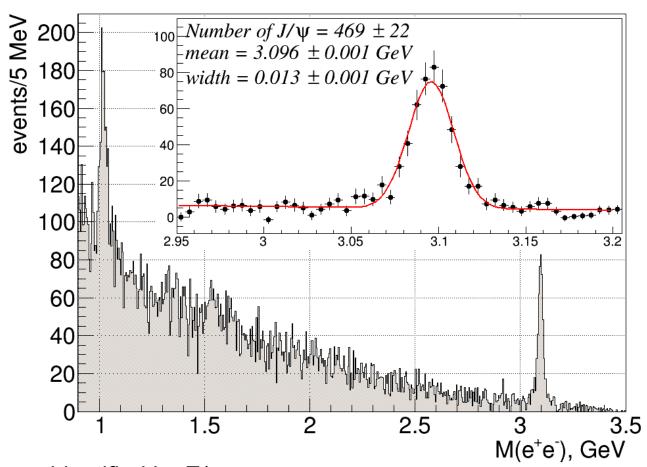
GlueX, PRC 95 (R) (2017) – In first Jlab 12 GeV paper


Natural exchange dominates if $\Sigma \sim 1$ More papers on asymmetries expected in 2019

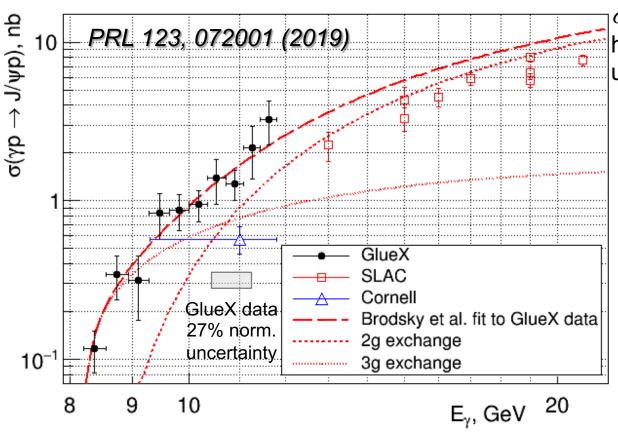
η radiative decay via Primakoff reaction


 $\eta \rightarrow \gamma \gamma$ yield [8.0 GeV < $E_{_{\gamma}}$ < 11.2 GeV]

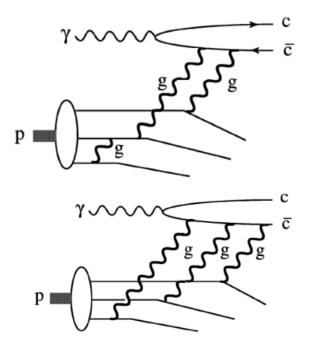
Precision measurement of $\Gamma\eta \rightarrow \gamma\gamma$: significant impact on fundamental QCD parameters (Goldstone nature of light pseudoscalars, light quark mass ratios, chiral anomaly etc.)


Near-threshold J/ψ photoproduction

Exclusive reaction $\gamma p \rightarrow J/\psi p \rightarrow e^+e^-p$


- Near threshold all valence quarks participate, corresponding to high-x gluon exchange
- Using VMD $(\gamma \rightarrow J/\psi)$ one can study $J/\psi p \rightarrow J/\psi p$
- Look for LHCb P_c : $\gamma p \rightarrow Pc \rightarrow J/\psi p$

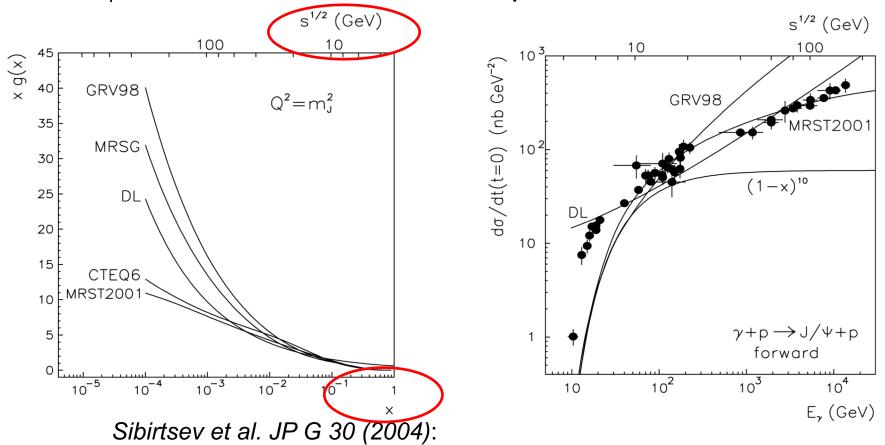
Near-threshold J/ψ photoproduction


- Electrons identified by E/p
- Tagged photon beam, 0.2% energy resolution
- Kinematic fit: 13 MeV mass resolution
- Presented results (\sim 470 J/ ψ): 25% of statistics accumulated up to date
- Preliminary results (ERRORS ONLY!) will be shown based on 70% of data

J/ψ total cross-section

Brodsky et al. PL B498 (2000):

 $\sigma(E_{\gamma})$ depending on number of hard-gluons exchanged using dimensional scaling

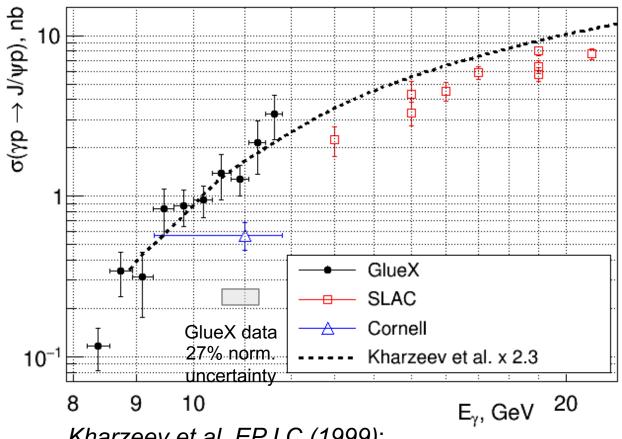

GlueX errors: quadratic sums of statistical and systematic ones

SLAC data: $\gamma d(p) \to J/\psi X \ {
m from} \ d\sigma/dt (t=t_{min})$ toward threshold less

$$F^2(t) \sim (1 - t/m_{2g}^2)^{-4} m_{2g} = 1.14 \text{ GeV}$$

GlueX data falls steeply than 2g exchange model

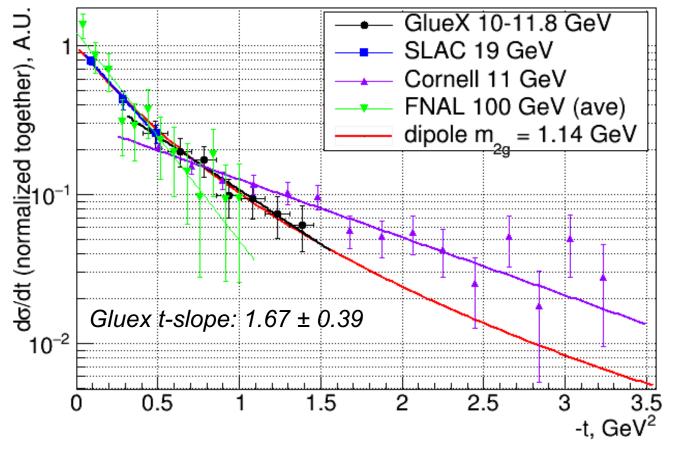
J/ψ differential cross-section – perturbative calculations



- Cross-section is very sensitive to gPDF at high x
- In case of two gluon exchange:

$$d\sigma/dt(t=0) \sim x^2 g^2(x)$$
 where $x=m_{J/\psi}^2/s$

- The near-threshold energy dependence is defined by the gPDF as x → 1
- t-dependence not defined by the pQCD calculations (discussed later)
- Comparison to the old data only

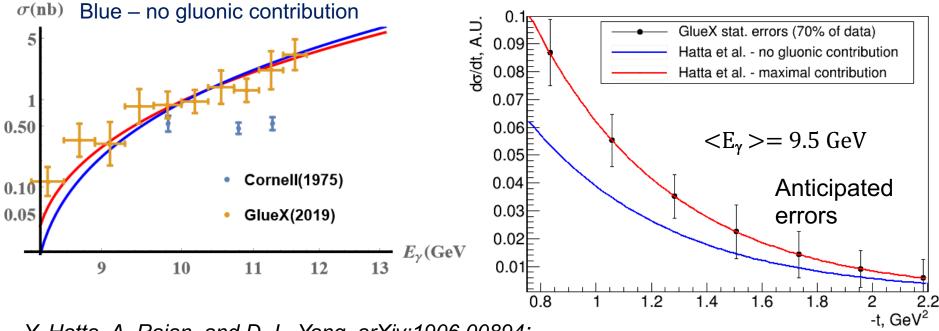

J/ψ total cross-section – perturbative calculations

Kharzeev et al. EPJ C (1999):

- Forward J/ψ–p scattering amplitude calculated using gluonic PDF and dispersion relations
- Real part of the amplitude dominates near threshold, critically important: contains scale anomaly term related to the mass of the proton arising from gluons.
- Shape of the theoretical curve similar to Gluex data; absolute normalization within the uncertainties of the model 15

J/ψ differential cross-section and proton gluonic FF

gluonic form factor (dipole form in analogy with the e.-m. FF):

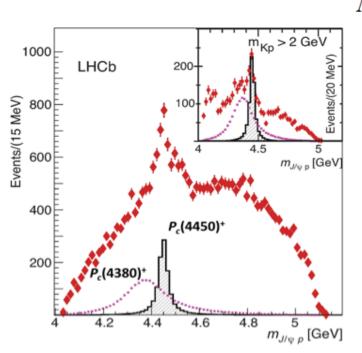

$$F(t) \sim 1/(1 - t/m_0^2)^2$$

Frankfurt and Strikman PRD66 (2002)

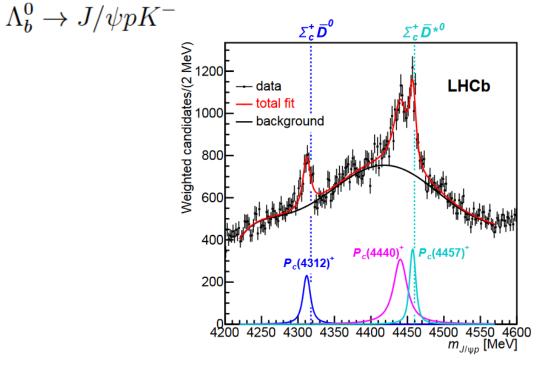
	e.m. FF	gluonic FF
reaction	$ep \rightarrow ep$	$J/\psi p \to J/\psi p$
transverse size of probe	0	<< 1 fm
effective mass scale m_0	0.84 GeV (vector meson)	$\sim 1.1~GeV$ (two-gluon mass)

J/ψ total cross-section – non-perturbative (holographic) calculations

Red – maximal contribution from gluons, favored by GlueX data


Y. Hatta, A. Rajan, and D.-L. Yang, arXiv:1906.00894:

Proton gluonic FF: "..these are nothing but the gravitational form factors A_g , Bg, Cg, \bar{C}_g "

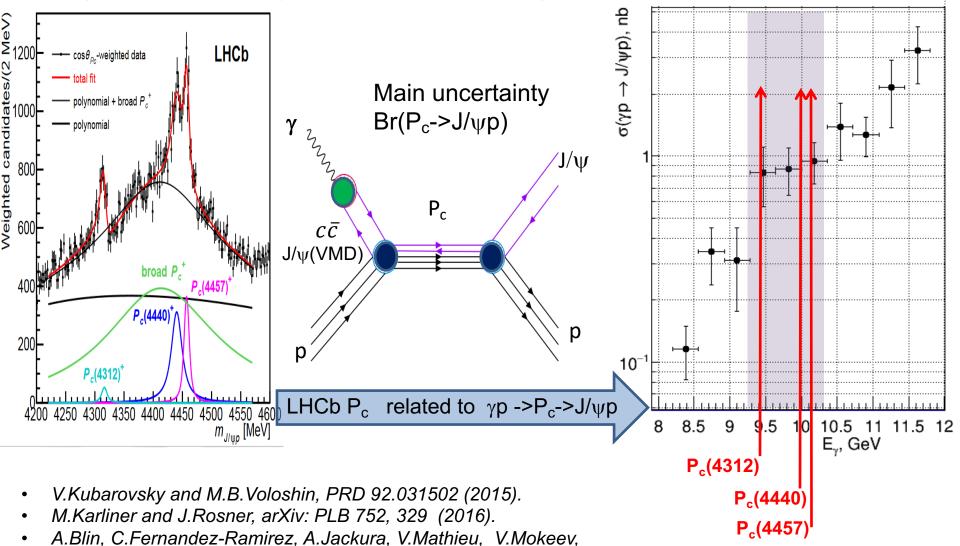

$$\langle P'|(T_g)^{\mu}_{\mu}|P\rangle = \langle P'|\left(\frac{\beta(g)}{2g}F^a_{\mu\nu}F^{\mu\nu}_a + m\gamma_m\bar{\psi}\psi\right)|P\rangle$$
$$= \bar{u}(P')\left[A_gM + \frac{B_g}{4M}\Delta^2 - 3\frac{\Delta^2}{M}C_g + 4\bar{C}_gM\right]u(P)$$

A_g, *Bg*, *Cg* were recently calculated on lattice: *P. E. Shanahan and W. Detmold, arXiv:1810.04626*

LHCb pentaquarks

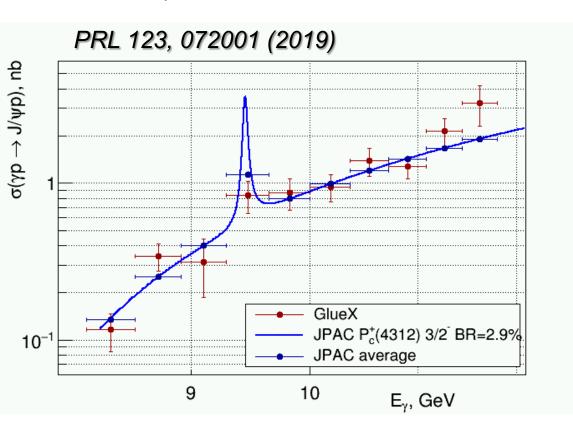
Phys. Rev. Lett., 115,072001 (2015)

Phys. Rev. Lett. 122, 222001 (2019)


18

- J^P of P_c states not determined yet
- Molecules (most likely), but compact states or rescattering effects not excluded

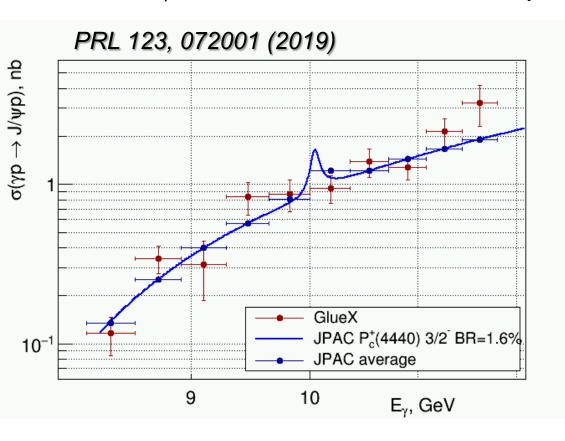
State	$M \; [\mathrm{MeV} \;]$	Γ [MeV]	(95% CL)	$\mathcal{R}~[\%]$
$P_c(4312)^+$	$4311.9 \pm 0.7^{+6.8}_{-0.6}$	$9.8 \pm 2.7^{+\ 3.7}_{-\ 4.5}$	(< 27)	$0.30 \pm 0.07^{+0.34}_{-0.09}$
$P_c(4440)^+$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$20.6 \pm 4.9^{+~8.7}_{-10.1}$	(< 49)	$1.11 \pm 0.33^{+0.22}_{-0.10}$
$P_c(4457)^+$	$4457.3 \pm 0.6^{+4.1}_{-1.7}$	$6.4 \pm 2.0^{+}_{-}$	(< 20)	$0.53 \pm 0.16^{+0.15}_{-0.13}$


LHCb pentaquarks and J/ψ photo-production

 If LHCb pentaquarks exist they should be seen in s-channel photoproduction (free of rescattering effects in the final state):

A.Pilloni, and A.Szczepaniak, PRD 94,034002 (2016).

J/ψ cross-section: model-dependent upper limits

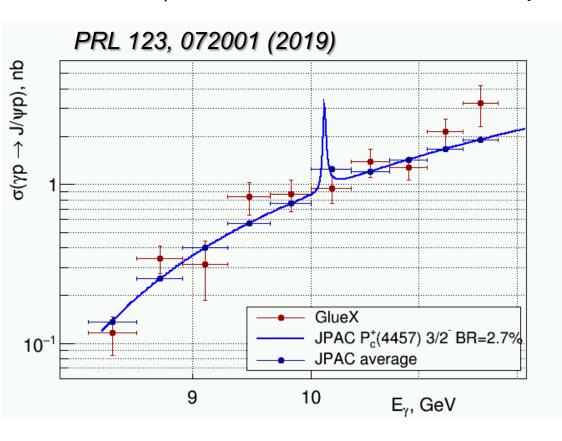


Assuming:

- all P_c independent J^P = 3/2
- s-channel model: $\sigma(\gamma p \rightarrow P_c \rightarrow J/\psi p) \approx$ 0.35 µb Br²(P_c \rightarrow J/\psi p) (2J+1)
- JPAC model for t-channel: Pomeron and tensor part extracted at high energies

	$B(P_c^+ \to J/\psi p)$	Upper Limits, %	$\sigma_{\max} \times \mathcal{B}(P_c^+)$	$\to J/\psi p$) Upper Limits, nb
	p.t.p. only	total	p.t.p only	total
$P_c^+(4312)$	2.9	4.6	3.7	4.6
$P_c^+(4440)$	1.6	2.3	1.2	1.8
$P_c^+(4457)$	2.7	3.8	2.9	3.9

J/ψ cross-section: model-dependent upper limits

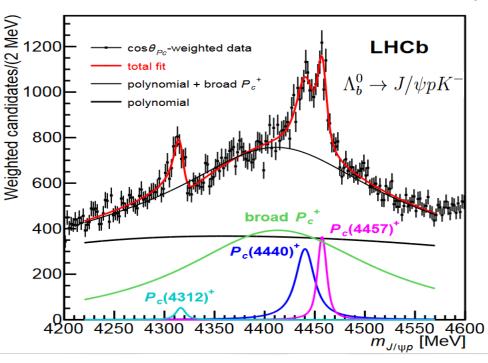


Assuming:

- all P_c independent J^P = 3/2
- s-channel model: $\sigma(\gamma p \rightarrow P_c \rightarrow J/\psi p) \approx$ 0.35 µb Br²(P_c \rightarrow J/\psi p) (2J+1)
- JPAC model for t-channel: Pomeron and tensor part extracted at high energies

	$B(P_c^+ \to J/\psi p)$	Upper Limits, %	$\sigma_{\max} \times \mathcal{B}(P_c^+)$	$T \to J/\psi p$) Upper Limits, nb
	p.t.p. only	total	p.t.p only	total
$P_c^+(4312)$	2.9	4.6	3.7	4.6
$P_c^+(4440)$	1.6	2.3	1.2	1.8
$P_c^+(4457)$	2.7	3.8	2.9	3.9

J/ψ cross-section: model-dependent upper limits



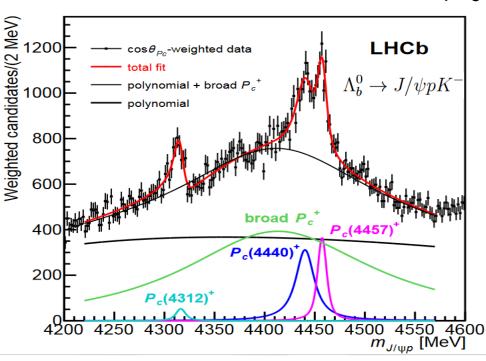
Assuming:

- all P_c independent J^P = 3/2
- s-channel model: $\sigma(\gamma p \rightarrow P_c \rightarrow J/\psi p) \approx$ 0.35 µb Br²(P_c \rightarrow J/\psi p) (2J+1)
- JPAC model for t-channel: Pomeron and tensor part extracted at high energies

	$B(P_c^+ \to J/\psi p)$	Upper Limits, %	$\sigma_{\max} \times \mathcal{B}(P_c^+)$	$T \to J/\psi p$) Upper Limits, nb
	p.t.p. only	total	p.t.p only	total
$P_c^+(4312)$	2.9	4.6	3.7	4.6
$P_c^+(4440)$	1.6	2.3	1.2	1.8
$P_c^+(4457)$	2.7	3.8	2.9	3.9

Lower limits on Br($P_c \rightarrow J/\psi p$) from data?

X. Cao, J-P. Dai arXiv:1904.06015


$$\mathcal{R} = \frac{\mathcal{B}(\Lambda_b^0 \to P_c^+ K^-) \mathcal{B}(P_c^+ \to J/\psi p)}{\mathcal{B}(\Lambda_b^0 \to J/\psi p K^-)}$$

$$\mathcal{B}(\Lambda_b^0 \to J/\psi p K^-) = (3.2^{+0.6}_{-0.5}) \times 10^{-4}$$

$$\mathcal{B}(\Lambda_b \to P_c^+ K^-) < 10^{-3}$$
 at the level of $\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^-)$ and $\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^+ \pi^- \pi^-)$

(model dependent 2-4%)
$$> \mathcal{B}(P_c^+ \to J/\psi p) > 0.05\%$$
 GlueX

Lower limits on Br($P_c \rightarrow J/\psi p$) from data?

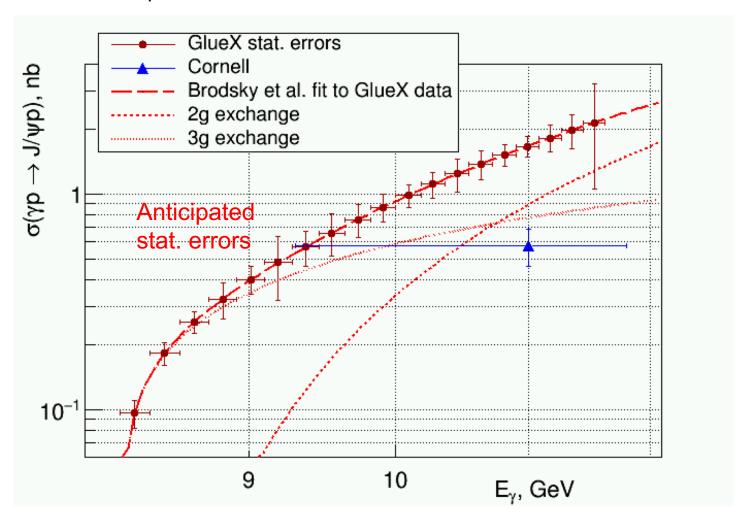
X. Cao, J-P. Dai arXiv:1904.06015

$$\mathcal{R} = \frac{\mathcal{B}(\Lambda_b^0 \to P_c^+ K^-) \mathcal{B}(P_c^+ \to J/\psi p)}{\mathcal{B}(\Lambda_b^0 \to J/\psi p K^-)}$$

$$\mathcal{B}(\Lambda_b^0 \to J/\psi p K^-) = (3.2^{+0.6}_{-0.5}) \times 10^{-4}$$

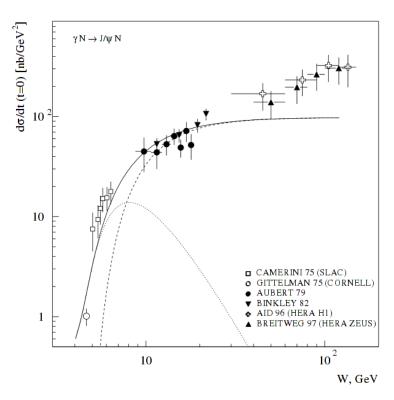
$$\mathcal{B}(\Lambda_b \to P_c^+ K^-) < 10^{-3}$$

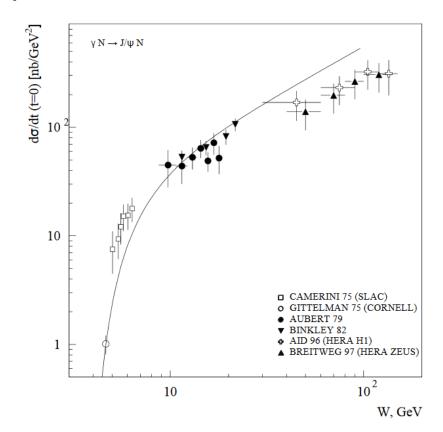
at the level of $\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^-)$ and $\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^+ \pi^- \pi^-)$


(model dependent 2-4%)
$$> \mathcal{B}(P_c^+ \to J/\psi p) \stackrel{\checkmark}{\star} 0.05\%$$
 GlueX

Outlook

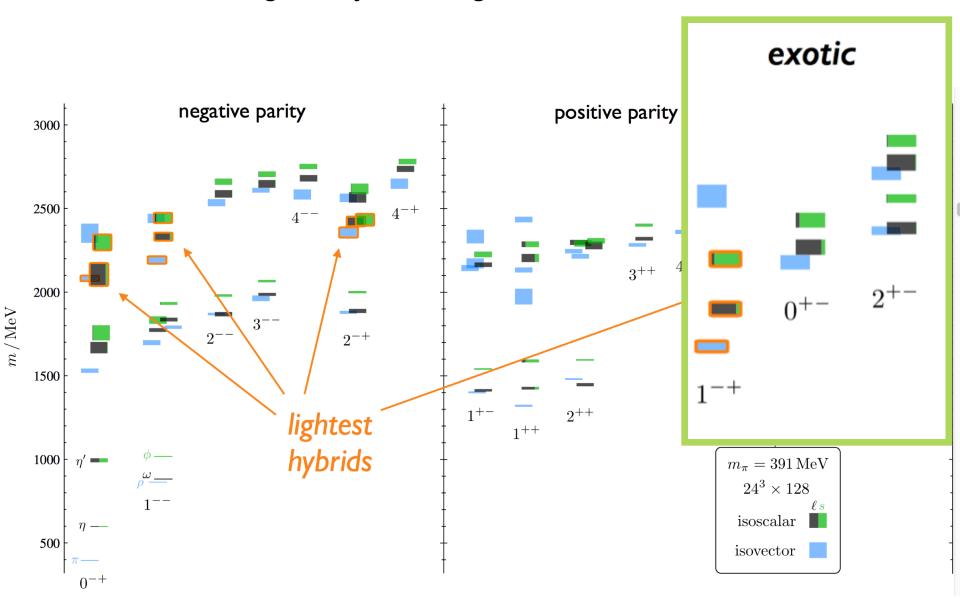
- First phase of GlueX experiment finished and already producing results.
- Next phase strangeness program and higher intensity.
- First measurement of near-thershold J/ ψ exclusive photoproduction important input to models of the gluonic structure of the proton at high X.
- Do not see evidence for LHCb pentaquarks and set model-dependent limits on Br(P_c → J/ψp) at several percent level. This allows us to discriminate between different pentaquark models.
- Expect results by the end of the year with 4 times more statistics


Back-ups


J/ψ total cross-section – future results

Preliminary results with 70% of statistics up to date – only errors (stat.) shown

J/ψ differential cross-section – perturbative calculations



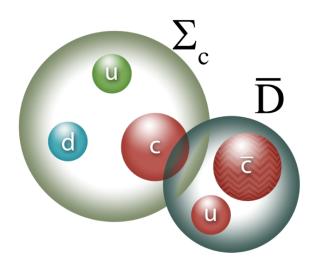
Kharzeev et al. EPJ C (1999):

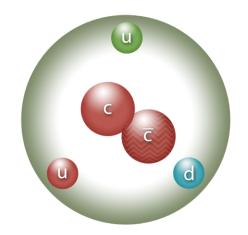
- Forward J/ ψ –p scattering amplitude calculated using gluonic PDF and dispersion relations.
- Very sensitive to gPDF at high x
- real part of the amplitude dominates, contains scale anomaly term related to the mass of the proton arising from gluons.

Searching for hybrids: light mesons lattice QCD

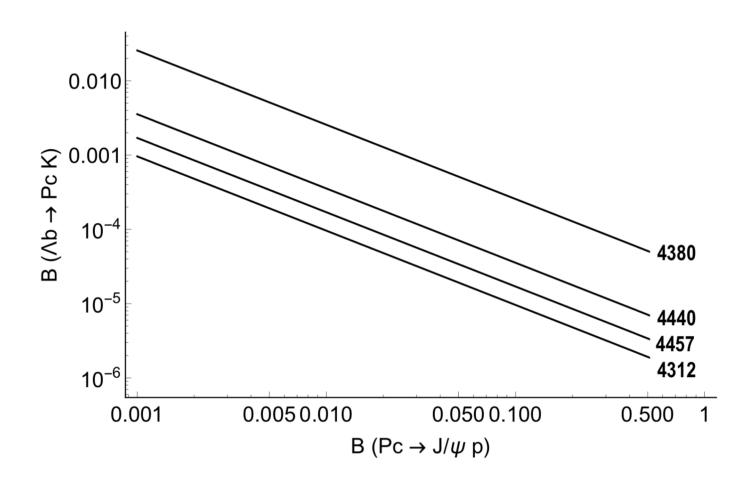
Br(Pc \rightarrow J/ ψ p) calculations: pentaquark models

Γ_{P_c} , MeV	$\Gamma_{J/\psi p}$, MeV	$\mathcal{B}($	$P_c \rightarrow J/c$	$\psi p)$	J^P	reference
21.7 (4450)	0.03 (4450)	0.	14% (445	(0)	1/2- (4312)	M.Eides and V.Petrov
					$1/2^{-}$ (4440)	Phys.Rev.D98, 114037
					$3/2^{-}$ (4457)	
- (4312)	suppr.(4312)	su	ppr. (43)	12)	1/2+ (4312)	same as above
44.8 (4440)	11 (4440)	2	5% (4440	0)	$1/2^{-}$ (4440)	and M.Eides, V.Petrov
16.2 (4457)	11 (4457)	6	8% (445)	()	$3/2^{-}$ (4457)	M.Polyakov,arXiv:1904.116
_	suppressed	s	uppresse	d	$3/2^-$ (4312)	A.Ali, A.Parkhomenko
					$3/2^+$ (4440)	Phys.Lett.B793, 365
			\bigcap		$5/2^+$ (4457)	
9.8* (4312)	6.5		66%		$1/2^-$ (4312)	ZH. Guo and J.Oller
20.6* (4440)	16.3		79%		1(3)/2- (4440)	Phys.Lett.B793, 144
6.4* (4457)	3.5		55%		$1(3)/2^{-}$ (4457)	
15.2 (4306)	4**		26%		$1/2^{-}$ (4306)	C.Xiao, J.Nieves, E.Oset,
23.4 (4453)	18**		77%		$1/2^{-}$ (4453)	arxiv:1904.01296
3.0(4453)	2**		67%	'	$3/2^{-}$ (4453)	Phys.Rev.D88, 056012
	21.7 (4450) - (4312) 44.8 (4440) 16.2 (4457) - 9.8* (4312) 20.6* (4440) 6.4* (4457) 15.2 (4306) 23.4 (4453)	21.7 (4450) 0.03 (21.7 (4450) 0.03 (4450) 0. - (4312) suppr.(4312) su 44.8 (4440) 11 (4440) 16.2 (4457) 11 (4457) 6 - suppressed s 9.8* (4312) 6.5 20.6* (4440) 16.3 6.4* (4457) 3.5 15.2 (4306) 4** 23.4 (4453) 18**	21.7 (4450) 0.03 (4450) 0.14% (445) - (4312) suppr.(4312) suppr. (4312) 44.8 (4440) 11 (4440) 25% (4440) 16.2 (4457) 11 (4457) 68% (4457) - suppressed suppresse 9.8* (4312) 6.5 66% 20.6* (4440) 16.3 79% 6.4* (4457) 3.5 55% 15.2 (4306) 4** 26% 23.4 (4453) 18** 77%	21.7 (4450) 0.03 (4450) 0.14% (4450) - (4312) suppr.(4312) suppr. (4312) 44.8 (4440) 11 (4440) 25% (4440) 16.2 (4457) 11 (4457) 68% (4457) - suppressed suppressed 9.8* (4312) 6.5 66% 20.6* (4440) 16.3 79% 6.4* (4457) 3.5 55% 15.2 (4306) 4** 26% 23.4 (4453) 18** 77%	21.7 (4450) 0.03 (4450) 0.14% (4450) 1/2 ⁻ (4312) 1/2 ⁻ (4440) 3/2 ⁻ (4457) - (4312) suppr.(4312) suppr. (4312) 1/2 ⁺ (4312) 1/2 ⁺ (4312) 44.8 (4440) 11 (4440) 25% (4440) 1/2 ⁻ (4440) 16.2 (4457) 11 (4457) 68% (4457) 3/2 ⁻ (4457) - suppressed suppressed 3/2 ⁻ (4312) 3/2 ⁺ (4440) 5/2 ⁺ (4440) 5/2 ⁺ (4440) 5/2 ⁺ (4457) 20.6* (4440) 16.3 79% 1(3)/2 ⁻ (4440) 6.4* (4457) 3.5 55% 1(3)/2 ⁻ (4457) 15.2 (4306) 4** 26% 1/2 ⁻ (4306) 23.4 (4453) 18** 77% 1/2 ⁻ (4453)

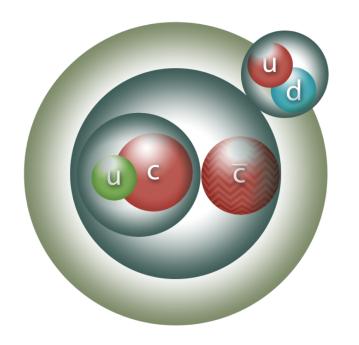

^{*} The total width measured by LHCb has been used.


 $^{^{\}ast\ast}$ The width calculated from coupling constants.

Br(Pc \rightarrow J/ ψ p) calculations: molecular vs hadrocharmonium

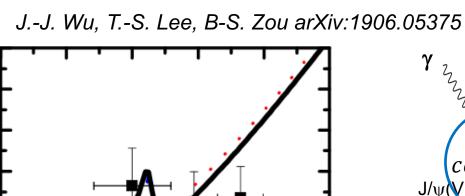

$\Gamma_{P_c},\mathrm{MeV}$	$\Gamma_{J/\psi p},{ m MeV}$	$\mathcal{B}(P_c \to J/\psi p)$	J^P	reference
21.7 (4450)	0.03 (4450)	0.14% (4450)	1/2- (4312)	M.Eides and V.Petrov
			$1/2^-$ (4440)	Phys.Rev.D98, 114037
			$3/2^-$ (4457)	
- (4312)	suppr.(4312)	suppr. (4312)	$1/2^+$ (4312)	same as above
44.8 (4440)	11 (4440)	25% (4440)	$1/2^-$ (4440)	and M.Eides, V.Petrov
16.2 (4457)	11 (4457)	68% (4457)	$3/2^-$ (4457)	M.Polyakov,arXiv:1904.1161
	21.7 (4450) - (4312) 44.8 (4440)	21.7 (4450) 0.03 (4450) - (4312) suppr.(4312) 44.8 (4440) 11 (4440)	21.7 (4450) 0.03 (4450) 0.14% (4450) - (4312) suppr.(4312) suppr. (4312) 44.8 (4440) 11 (4440) 25% (4440)	21.7 (4450) 0.03 (4450) 0.14% (4450) 1/2 ⁻ (4312) 1/2 ⁻ (4440) 3/2 ⁻ (4457) - (4312) suppr.(4312) suppr. (4312) 1/2 ⁺ (4312) 44.8 (4440) 11 (4440) 25% (4440) 1/2 ⁻ (4440)

all subsystems in color singlet states



Lower limits on pentaquark BR

Br(Pc \rightarrow J/ ψ p) calculations: compact diquark


model	Γ_{P_c} , MeV	$\Gamma_{J/\psi p}, \mathrm{MeV}$	$\mathcal{B}(P_c \to J/\psi p)$	J^P	reference
compact	_	suppressed	suppressed	$3/2^-$ (4312)	A.Ali, A.Parkhomenko
diquark				$3/2^+$ (4440)	Phys.Lett.B793, 365
				$5/2^+$ (4457)	

diquarks in color anti-triplet states

The bound-state effect in (uC)-diquark reduces the probability to form $C\overline{C}$ -state

Attempts to suppress VMD coupling

4.6

(a)

4.8

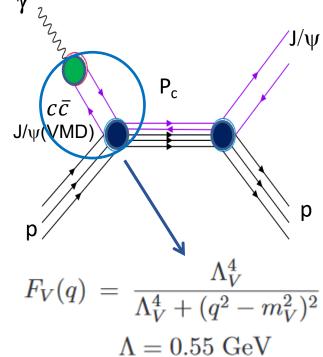
W (GeV)

4.4

1.2

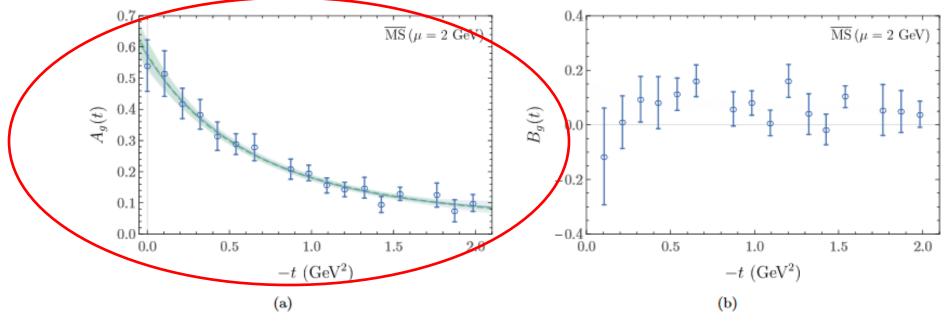
1.0

8.0

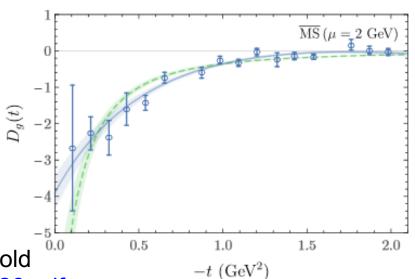

0.6

0.4

0.2


4.0

4.2


- J/ ψ is suppressed by 10⁻³, VMD coupling dominated by ρ and ω
- How to explain J/ψ photoproduction at high energies with such suppression???
- Other papers (J. Phys. G4 (1978) 989, Phys. Rev. Lett. 38 (1977) 263) suggest some moderate suppression (factor of 2-3)

Proton Gluonic Form Factors: A,B,C (lattice calculations)

Fits in dipole form:

	m (GeV)	α
$\overline{A_g}$	1.13(6)	0.58(5)
D_g	0.48(5)	-10(3)

P. E. Shanahan and W. Detmold https://arxiv.org/pdf/1810.04626.pdf