INVESTIGATING QCD MATTER WITH PHENIX AT RHIC WITH SPECIAL FOCUS ON SMALL SYSTEMS

MÁTÉ CSANÁD, EÖTVÖS UNIVERSITY, BUDAPEST, HUNGARY

HIX 2019, AUGUST 16-21, CRETE, GREECE

Παλαιόχωρα

Rethimno Péθuuvo

Ηρακλειο

2/29 CONTENT OF THIS TALK

- INTRODUCTION
 - The Big Bang and the Little Bangs in the lab
 - Experimental control parameters
 - RHIC and PHENIX
- BASIC OBSERVATIONS
 - Nuclear modification, flow, thermal photons, heavy flavor, HBT, fluctuations
- RECENT SMALL SYSTEMS RESULTS FROM PHENIX
 - Nuclear modification
 - Thermal photons
 - Flow

3,29 BIG BANG IN THE LAB

- Ages of the Universe:
 - Stars & Galaxies
 - Atoms
 - Nuclei
 - Nucleosynthesis
 - Elementary particles
 - ... ?
- How to investigate?
- Create little bangs
- Collisions of heavy ions
- Record outcoming particles

4/29 TIMELINE OF A HEAVY ION COLLISION

- Pre-thermalization stage:
 - $\sim 1 \text{ fm/c}$
- Quark-hadron transition: ~7-10 fm/c
- Chemical + kinetic freeze-out

MIT Heavy Ion Event Display: Au+Au 200 GeV

Heavy Ion Group @ MIT Yen-Jie Lee, Andre S. Yoon and Wit Busza

Time = -10.0 fm/c

5,29 TIME EVOLUTION OF A HEAVY ION COLLISION

Hadron gas

Freeze-out, hadrons

π[±], K[±], p, ...

 γ , e^{\pm} , μ^{\pm}

π[±], K[±], p, ...

- Initial stage:
 - Hard scattering
 - Jet formation
- Leptons, photons:
 - "shine through"
- Hadrons:
 - Dissociation and coalescence
 - "Final" hadrons created at freeze-out
- How do we know if sQGP was there or not?

- Collision system & centrality: controls available volume
- Event geometry: reaction plane, event plane, fluctuations
- Important parameters: N_{part} (system size), N_{coll} (x-sect)

arly Universe

The Phases of QCD

Quark-Gluon Plasma

7,29 THE RELATIVISTIC HEAVY ION COLLIDER

- At the Brookhaven National Laboratory, Long Island, New York, USA
- Collisions of: \vec{p} , d, ³He, Al, Cu, Au, U
- Accelerator energies: 7.7-200 GeV/nucleon, even 0.5 I TeV for \vec{p}
- Experiments: STAR; future: sPHENIX; past: BRAHMS & PHOBOS & PHENIX

8/29 PHENIX AND sPHENIX

- PHENIX: versatile detector identifying many different particles, recording large amount of collisions. Dismantled in 2016, to give way to sPHENIX
- sPHENIX: to take data in ~2023
 - Jets, jet correlations, Upsilon states
 - EM+Hadronic calorimetry, high resolution tracking, fast (~100 kHz) data aquisition

9,29 THE RHIC BEAM ENERGY/SPECIES SCAN

- Collision experiments: acceptance independent of energy
- BES-I: 7.7-200 GeV; BES-II: 7.7-19.9 GeV, increased luminosity

Small system scan: x+Au, 19.6-200 GeV

STAR fixed target mode: down to 3 GeV

$\sqrt{S_{NN}}$	STAR Au+Au	PHENIX Au+Au	Veer		$\sqrt{S_{NN}}$	PHENIX	Species
[GeV]	events [10 ⁶]	events [10 ⁶]	Tear	[GeV]	events [10 ⁶]	species	
200.0	2000	7000	2010		200.0	2.2	p+Au
62.4	67	830	2010		200.0	1600	³ He+Au
54.4	1300	-	2017		200.0	2057	d+Au
39.0	130	385	2010		62.4	1655	d+Au
27.0	70	220	2011		39.0	2000	d+Au
19.6	36	88	2011		19.6	1040	d+Au
14.5	20	247	2014				
11.5	12	-	2010				
7.7	4	1.4	2010				

150

100

OGP

dE_/dη

3

10₁₂₉ QGP SIGNATURES EXPECTATIONS, 1996

Critical energy density: $\epsilon_c \approx 1 \text{ GeV/fm}^3$, temperature $T_c \approx 170 \text{ MeV}$

φ, ρ, ω widths

?

 ${d E_{\downarrow}}/{d\eta}$

 ${d E_{\downarrow}}/{d\eta}$

disoriented chiral condensate chiral charmonium strangeness Y/ψ width (EM/had ratio) $N_{\pi}o/N_{\pi}+\pi$ b. prestoration nasses 1.0 10 DCC 0.5 0.5 QGP .03 $\textbf{dE}_{\textbf{/}}\textbf{d}\eta$ $\textbf{dE}_{\textbf{/}}\textbf{d}\eta$ $\textbf{dE}_{\textbf{/}}\textbf{d}\eta$ interferometry parton radiation from plasma temperature propagation therma γ's 200 MeV

dE_/dη

Some observed, some not...

M. Csanád (Eötvös U) @ HiX 2019

ε

 ${d E_{\downarrow}}/{d\eta}$

NUCLEAR MODIFICATION: TOMOGRAPHY!

BASIC QGP OBSERVATIONS

2₁₂₉ SUPPRESSION AS A FUNCTION OF CENTRALITY

• No suppression in d+Au or peripheral Au+Au; strong suppression in central!

3₇₂₉ SUPPRESSION OF THE AWAY SIDE JET

- Angular correlation of high energy hadrons
- Outgoing jet: similar in p+p, d+Au, Au+Au
- Inward going (away side) jet: missing in central Au+Au

4/29 HOW DO OTHER PARTICLES BEHAVE?

- All hadrons suppressed, direct photons ,,shine through"
- Suppression dependent of system size (controlled by centrality or N_{part})

ASIC QGP OBSERVATIONS

15²⁰ OBSERVATION OF THE ELLIPTIC FLOW

 Spatial anisotropy creates momentum-space anisotropy!

ELLIPTIC FLOW

Off-center collisions between gold nuclei produce an elliptical

Fragment of gold nucleus

6₁₂₉ ELLIPTIC FLOW SCALING

- Hydro predicts scaling (v_2 versus $w \sim E_K/T_{eff}$)
- PHENIX p data STAR π data Coalescence predicts quark number scaling STAR K data STAR p data
 -0.2 PHOBOS 20 GeV data $E_K^{\text{hadron}} = n_q E_K^{\text{quark}}$ PHOBOS 62 GeV data PHOBOS 130 GeV data ----PHOBOS 200 GeV data PHOBOS 3-15% data 🛏 🗢 🛏 $v_n^{\text{hadron}}(E_K^{\text{hadron}}) \cong n_q v_n^{\text{quark}}(E_K^{\text{quark}})$ PHOBOS 15-25% data -0.15 PHOBOS 25-50% data Buda-Lund prediction Flow develops in pre-hadronic stage! (c) 0-30% (d) 30-80% 0.15 H 0.1 ■π ★K⁰_S +φ ⊕Ξ ₀0.1 ч/≈ 20.05 ▲K • p ◊Λ • Ω 0.05 Au+Au, **√**s_{NN} = 200 GeV Data/Fit 8.0 ata/ 1.2 0.1 0.01 Csanád, Csörgő, Lörstad, Ster (NPA742:80-94,2004) Csanád, Csörgő, Lörstad, Ster et al. (EP|A38:363-368,2008) Fit Error 0.6 2 2 O $(m_{T}^{-}-m_{0})/n_{a}^{-}$ (GeV/c²)

0.25

S

PHENIX π data ⊢ PHENIX K data

PHENIX, PRL98(2007)162301; STAR, PRL116(2016)62301

7¹²⁹ THERMAL PHOTONS

- Soft component in direct photon spectrum compared to p+p extrapolation
- These are thermal photons!
- Large initial temperature, 3-600 MeV!

8/29 DIRECT PHOTONS

- Clear direct γ signal at lower energies
- Yield scaling from RHIC to LHC, transition from p+p, to A+A: p+Au, d+Au
- Effective photon temperature similar from 39 to 2760 GeV
- Note overlapping mechanisms: hadron gas, sQGP, jets, bremsstrahlung, hard scatt.

9/29 SUPPRESSION IN HIGHLY ASYMMETRIC SYSYTEMS

- p+Au, d+Au, ³He+Au compared
- Centralities determined as for large systems
- New p+Au results show large centrality dependence
- All systems agree at high pT
- At moderate pT, ordering seen
- Model comparision:
 - Vitev, HIJING++ investigated
 - No full match of ordering, peak location, high pT region

20₍₂₉ ELLIPTIC FLOW IN SMALL SYSTEMS

- Deuteron-gold energy scan (19.6-200 GeV), PHENIX, PRC96, 064905 (2017)
- superSONIC in good agreement at 62.4 GeV and 200 GeV
- Underpredicts data at 19.6 GeV and 39 GeV
- Data still contains nonflow effects: AMPT(EventPlane) w/ nonflow matches

2 ORIGIN OF FINAL STATE COLLECTIVITY?

- Is it due to the appearance of the sQGP (i.e. a strongly coupled fluid)?
 - If yes, how much time is needed to spend in QGP phase? •
 - Test: d+Au collisions from 20 to 200 GeV ٠
- Is it due to initial geometry and hydro?
 - Hydrodynamics: initial spatial correlations •
 - Alternative: initial momentum correlations .
 - Test: p+Au, d+Au, ³He+Au
 - How do v_2 and v_3 evolve with initial state geom.?

22,29 INITIAL STATE AND HYDRO EVOLUTION

• Evolution from SONIC

23,29 FLOW IN SMALL SYSTEMS: GEOMETRIC ORDERING

• Flow ordered similarly as initial state:

24 COMPARISON TO HYDRO CALCULATIONS

-- v_2 Data - v₃ Data

V_n SONIC Eur. Phys. J. C 75, 15 (2015)

- Hydro calculations
- Both 2+ID, $\eta/s = 0.08$, MCGlauber initial cond.
- v_n iEBE-VISHNU PRC 95, 014906 (2017) Different hadronic rescattering Nature Physics 15, 214-220 (2019) 0.2 _____ v_n √s_{NN} = 200 GeV 0-5% ∖s_{NN} = 200 GeV 0-5% s_{NN} = 200 GeV 0-5% 0.18F а PHENIX 0.16 arXiv:1805.02973 0.14E 0.12 ³He+Au d+Au p+Au 0.1E 0.08 0.06 0.04E 0.02 2.5 1.5 2 2.5 3 2 2.5 2 0.5 05 1.5 3 0.5 p_T (GeV/c) p_T (GeV/c) p_T (GeV/c)

25/29 IS THERE AN ALTERNATIVE EXPLANATION?

• Hydro: initial state spatial correlations a.k.a. geometry

26/29 ALTERNATIVE MODEL VS DATA

- MSTV postdiction (Mace, Skokov, Tribedy, Venugopalan, PRL121, 052301)
 - Official PRL Erratum: Phys. Rev. Lett. 123,039901(E) (2019)
- Before erratum: reasonable v₂ description, misses v₃ ordering

27/29 ALL MODELSVS DATA

- Hydro description much better already ,,by eye"
- Tools for discrmination: confidence level
- MSTV: multiplicity dependence; test v_2 at same dN/d η

-- v_2 Data

- v_3 Data

v_n SONIC

• V₂ MSTV

v_n iEBE-VISHNU

28/29 FORWARD PARTICLE PRODUCTION?

- Wounded quark model:
 - Each quark participant produces hadrons, common emission function $F(\eta)$
 - Constrained by $dN/d\eta$ in d+Au Barej, Bzdak, Gutowski, PRC97, 034901 (2018)
- Hydrodynamic simulation
 - MC Glauber initial condition
 - Longitudinal entropy distribution
 - 3+ID viscous evolution
 - $\eta/s = 1/4\pi$, T-dependent bulk viscosity
 - Statistical hadronization Bozek, Broniowski, PLB739, 308 (2014)
- Wounded quark model works at all centralities, p+Al to ³He+Au

Phys.Rev.Lett. 121 (2018) 222301

29,29 SUMMARY

- Clear consensus on a list of QGP signs found in Au+Au
 - Suppression, flow, thermal photons
- Strong evidence for QGP droplets in small systems
 - Acceptable confidence levels for hydro in p/d/³He+Au
- Longitudinal dynamics of small systems also explored in detail

If you are interested in these subjects, come to our Zimányi School 2019 December 2-6., Budapest, Hungary

ZIMÁNYI SCHOOL'19

19. ZIMÁNYI SCHOOL

WINTER WORKSHOP ON HEAVY ION PHYSICS

> Dec. 2. - Dec. 6., Budapest, Hungary

József Zimányi (1931 - 2006)

http://zimanyischool.kfki.hu/19

3I BACKUP SLIDES

COBSERVATI

RECENT

32,29 HOW TO INVESTIGATE THESE LITTLE BANGS?

33,29 COLLISIONS OF DIFFERENT CENTRALITY

34,29 FACILITIES: LARGE HADRON COLLIDER (+SPS)

- LHC collisions: p+p, p+Pb and Pb+Pb
- Energies: from 2.76 TeV/nucleon to 13 TeV (p+p only)
- Experiments: ALICE, ATLAS, CMS, LHCb, LHCf, MoEDAL, TOTEM
- Phase diagram related studies: SPS (NA61/SHINE, previously NA49)

35,29 EXPLORING THE PHASE MAP OF QCD

- Phase map: temperature versus matter excess (baryochem. pot. μ_B)
- Control parameters:
 - Collision energy, system
 - Collision geometry
- Crossover at low μ_B and T \cong 170 MeV \cdot
- Probably Ist order quark-hadron p.t. at high μ_B (NJL, bag model, etc)
- Critical End Point (CEP) in between?
- High μ_B : nuclear matter, neutron stars, color superconductors...
- Phase transition importance: even in core-collapse supernovae!

36/29 ELLIPTIC FLOW IN THE BEAM ENERGY SCAN

- With Blast-Wave fits
- Predictions for not fitted particles agree well
- Flow in all systems!

STAR Collaboration, PRC93, 014907 (2016)

37,29 ELLIPTIC FLOW SCALING IN THE BES

- STAR data on mesons from π to ϕ , baryons from p to Ω
- Scaling everywhere, except ϕ below 11.5 GeV, but little statistics

Phys. Rev. C 88 (2013) 14902 Phys. Rev. C 93 (2016) 014907 Phys. Rev. Lett. 116 (2016) 062301

38/29 SUPPRESSION IN THE BEAM ENERGY SCAN

- R_{CP} analyzed here instead of R_{AA} , transition to above one with coll. energy
- Hadron enhancement: Cronin-effect, radial flow, coalescence domination
- Competing effects, HIJING reproduces enhancement w/o jet quenching
- Identified particles: less suppression for kaons, enhancement for protons

STAR collaboration, Phys. Rev. Lett. 121, 032301 (2018) [arXiv:1707.01988]

39,29 SEARCH FOR THE CRITICAL POINT POSSIBLE?

- Effects of the CEP in a broad region (via an effective potential ~ $N_f=2$ QCD)
 - Y. Hatta and T. Ikeda, PRD67,014028(2003) [hep-ph/0210284]
- Hydro evolution attracted to the critical point
 - M.Asakawa et al., PRL101,122302(2008) [arXiv:0803.2449]

40,29 STAR: UPGRADES AND FIXED TARGET PROGRAM

- Large acceptance, great PID capabilities: great for identified hadrons
- Upgrades for BES-II
 - innerTPC: better dE/dx (PID) and momentum resolution, by 2019
 - Event Plane Detector: replace BBC, better triggering & EP resolution, by 2018
 - Endcap TOF: extended fwd PID, by 2019

- Fixed target program: I cm wide, Imm thick target at 2.1 m
- At the lowest energies: out to $\mu_B > 700 \text{ MeV}$

4 J₁₂₂ FIXED TARGET BARYOCHEMICAL POTENTIALS

Reach down to 3 GeV in center of mass energy!

Collider Energy	Fixed Target Coll. Energy	Single Beam C.M. Energy	Rapidity	μ _B (MeV)
62.4	7.7	30.3	2.10	420
39.0	6.2	18.6	1.87	487
27.0	5.2	12.6	1.68	541
19.6	4.5	8.9	1.52	589
14.5	3.9	6.3	1.37	633
11.5	3.5	4.8	1.25	666
9.1	3.2	3.6	1.13	699
7.7	3.0	2.9	1.05	721

Energies unreachable in collider mode

42,29 FUTURE FACILITIES: NICA, FAIR, J-PARC HI

- New facilities planned/built
- NICA: 2020, MPD&BM@N
- FAIR: 2022, CBM
- J-PARC HI: 2025, JHITS

43/29 (FUTURE) FACILITIES COMPARISON

- Many future facilities and experiments, SPS and RHIC already running
- RHIC, NICA: Collider and fixed target
- SPS, FAIR, J-PARC: fixed target
- Energy ranges from 2 to 20 GeV in $\sqrt{s_{NN}}$

Compilation from Daniel Cebra and Olga Evkidomiv:

Facility	RHIC BES-II & Fixed Target	SPS	NICA	FAIR	J-PARC HI
Experiment	STAR	NA61	MPD & BM@N	CBM	JHITS
Start	2019	2009	2020-23	2025	2025
Energy ($\sqrt{s_{NN}}$, GeV)	2.9-19.6 GeV	4.9-17.3	2.0-11	2.7-8.2	2.0-6.2
Rate	100-1000 Hz	100 Hz	10 kHz	10 MHz	10-100 MHz
Physics	Critical Point Onset of Deconf.	Critical Point Onset of Deconf.	Onset of Deconfinement Compr. Hadronic Matter	Onset of Deconfinement Compr. Hadronic Matter	Onset of Deconfinement Compr. Hadronic Matter

44,29 HEAVY FLAVOR SUPPRESSION & REGENERATION

- Timeline: quarkonium (qq̄) formation \rightarrow QGP evolution \rightarrow qq̄ decay
- Quarkonia experience the whole QGP evolution, competing processes
- Suppression due to color-screening: temperature and size/mass dependence

Images from J Castillo, SQM17 and A Mócsy, HardProbes2009

45,29 CONTROL EXPERIMENT: D+AU COLLISIONS

• Suppression in Au+Au collisions: Ist milestone

*BASIC OBSE*RVA

- Lack of suppression in d+Au: 2nd milestone
- Two PRL covers

Zajc, Riordan, Scientific American

46,29 RHIC RECORDED RUNS AND LUMINOSITY

47,29 FREEZE-OUT FROM PARTICLE YIELDS

- Chemical and kinetic freeze-out parameters via THERMUS and BlastWave
- Thermal multiplicity assumption valid
- Systematics investigated (parameter constraints, included species)

STAR Collaboration, Phys. Rev. C 96, 044904 (2017) [arXiv:1701.07065]

48/29 EVEN HEAVY FLAVOR FLOWS!

- Electrons from heavy flavor measured
- Even heavy flavor is suppressed
- Even heavy flavor flows
- Strong coupling of charm&bottom to the medium
- Small charm&bottom relaxation time in medium and small viscosity

49,29 VISCOSITY

- Viscosity/entropy density: proportional to mean free path
- Strong coupling: small η/s
- $\operatorname{AdS}_{D+1}/\operatorname{CFT}_{D}$ lower bound: $\frac{\eta}{s} \ge \frac{\hbar}{4\pi}$
 - Malcadena et al.: Adv. Theor. Math. Phys. 2:23 I 252
 - Kovtun et al.: Phys.Rev.Lett. 94 (2005) 111601
- Measurement and calculation results:
 - R. Lacey et al., Phys.Rev.Lett.98:092301,2007
 - H.-J. Drescher et al., Phys.Rev.C76:024905,2007
 - S. Gavin, M. Abdel-Aziz, Phys.Rev.Lett.97(2006)162302
 - A.Adare et al. (PHENIX), PRL98:172301,2007

50,29 J/ Ψ IN THE BEAM ENERGY SCAN

- Regeneration from $c\overline{c}$ and feed-down from χ_c and ψ' , increases with $\sqrt{s_{NN}}$
- Screening and cold nucl. matt.: less primordial charmonium with increasing √S_{NN}
- Two effects seem to compensate for $\sqrt{s_{NN}} < 200 \text{ GeV}$

STAR Collaboration, Phys.Lett. B771 (2017) 13-20

5 J/PSI IN THE BEAM ENERGY SCAN

• STAR Collaboration, Phys.Lett. B771 (2017) 13-20

52,29 QUARK PARTICIPANT SCALING

- Transverse energy and particle number: not constant vs Npart!
- Number of quark participants: a better estimator, quark degrees of freedom?

53,29 STATISTICAL TEST OF ALL MODELS

• QGP droplet and hydro describes data the best; MSVT close to marginal

54,29 MVST PREDICTION FOR FIXED MULTIPLICITY

- Compare similar collision systems
 - d+Au 20-40% ($dN/d\eta = 12.2 \pm 0.9$) PRC 96, 064905 (2017)
 - p+Au 0-5% ($dN/d\eta = 12.3 \pm 1.7$) PRC 95,034910 (2017)
- Fixed multiplicity: same MVST prediction for v₂
- Hydro description: better qualitative agreement (same multiplicity scales with eccentricity)
- Note: no nonflow systematics estimate in d+Au (≤ than in p+Au)

