JLab Hall C Neutron A₁ⁿ Experiment

Xiaochao Zheng

University of Virginia, Charlottesville, Virginia, USA

How does nucleon spin study fit in QCD/strong interaction study?

- High x spin physics and the upcoming A1n experiment in Hall C of JLab
- Summary and outlook

How does Nucleon Spin Physics Contribute to QCD/Strong Interaction Study? - Theoretical Aspect

- To understand the compositeness how do partons form the nucleon spin? the proton spin crisis/puzzle
- perturbative/high-energy/short-distance regime: to verify perturbative QCD calculations
- non-perturbative/low-energy/long-distance regime: to test effective field theories that use the hadronic degrees of freedom
- to provide predictions for structure functions
- how hadrons arise from quark and gluon degrees of freedom? lattice QCD

How does Nucleon Spin Physics Contribute to QCD/Strong Interaction Study? - Observables

- To understand the compositeness how do partons form the nucleon spin? - moments of spin structure functions (SSF)
- perturbative/high-energy/short-distance regime: to verify perturbative QCD calculations - Q² evolution of F_{1,2}, g₁, etc
- non-perturbative/low-energy/long-distance regime: to test effective field theories that use the hadronic degrees of freedom
 SSF moments at very low Q²/long distances
- to provide/test predictions for structure functions
 structure function ratios at large x
- How hadrons arise from quark and gluond degrees of freedom?
 detailed Q2 dependence of SF or SSF moments

UNIVERSITY of VIRGINIA

lepton	Experiment	Ref.	Target	Analysis	W (GeV)	x_{Bj}	$Q^2 \ ({ m GeV^2})$
scattoring spin	E80 (SLAC)	[101]	р	A_1	2.1 to 2.6	0.2 to 0.33	1.4 to 2.7
scallering spin	E130 (SLAC)	[102]	р	A_1	2.1 to 4.0	0.1 to 0.5	1.0 to 4.1
structure	EMC (CERN)	[103]	р	A_1	5.9 to 15.2	1.5×10^{-2} to 0.47	3.5 to 29.5
experiments	SMC (CERN)	[250]	p, d	A_1	7.7 to 16.1	10^{-4} to 0.482	0.02 to 57
(mostly	E142 (SLAC)	[244]	³ He	A_1, A_2	2.7 to 5.5	3.6×10^{-2} to 0.47	1.1 to 5.5
(mostry inclucius):	E143 (SLAC)	[245]	p, d	A_1, A_2	1.1 to 6.4	3.1×10^{-2} to 0.75	0.45 to 9.5
inclusive):	E154 (SLAC)	[246, 247]	³ He	A_1, A_2	3.5 to 8.4	1.7×10^{-2} to 0.57	1.2 to 15.0
	E155/x (SLAC)	[248, 249]	p, d	A_1, A_2	3.5 to 9.0	1.5×10^{-2} to 0.75	1.2 to 34.7
	HERMES (DESY)	[253, 254]	p, ³ He	A_1	2.1 to 6.2	2.1×10^{-2} to 0.85	0.8 to 20
	E94010 (JLab)	[256]	³ He	g_1, g_2	1.0 to 2.4	1.9×10^{-2} to 1.0	0.019 to 1.2
	EG1a (JLab)	[257]	p, d	A_1	1.0 to 2.1	5.9×10^{-2} to 1.0	0.15 to 1.8
	RSS (JLab)	[258, 259]	p, d	A_1, A_2	1.0 to 1.9	0.3 to 1.0	0.8 to 1.4
JLab's focus is	COMPASS	[251]	\mathbf{p}, \mathbf{d}	A_1	7.0 to 15.5	4.6×10^{-3} to 0.6	1.1 to 62.1
high precision.	(CERN) DIS						
low to	COMPASS	[280]	\mathbf{p}, \mathbf{d}	A_1	5.2 to 19.1	4×10^{-5} to 4×10^{-2}	0.001 to 1 .
intermediate	(CERN) low- Q^2						
	EG1b (JLab)	[260, 261,	p, d	A_1	1.0 to 3.1	2.5×10^{-2} to 1.0	0.05 to 4.2
Q ² values, and		262, 263]	9.7.7				
high x	E99-117 (JLab)	[264]	³ He	A_1, A_2	2.0 to 2.5	0.33 to 0.60	2.7 to 4.8
	E99-107 (JLab)	[265]	°He	g_1, g_2	2.0 to 2.5	0.16 to 0.20	0.57 to 1.34
	E01-012 (JLab)	[266, 267]	°He	g_1, g_2	1.0 to 1.8	0.33 to 1.0	1.2 to 3.3
	E97-110 (JLab)	[268]	³ He	g_1, g_2	1.0 to 2.6	2.8×10^{-3} to 1.0	0.006 to 0.3
	EG4 (JLab)	[269]	p, n	g_1	1.0 to 2.4	7.0×10^{-3} to 1.0	0.003 to 0.84
	SANE (JLab)	[271]	р	A_1, A_2	1.4 to 2.8	0.3 to 0.85	2.5 to 6.5
	EG1dvcs (JLab)	[270]	р	A_1	1.0 to 3.1	6.9×10^{-2} to 0.63	0.61 to 5.8
	E06-014 (JLab)	[272, 273]	³ He	g_1, g_2	1.0 to 2.9	0.25 to 1.0	1.9 to 6.9
	E06-010/011	[278]	³ He	single	2.4 to 2.9	0.16 to 0.35	1.4 to 2.7
	(JLab)		2	spin asy.			
	E07-013 (JLab)	[72]	³ He	single	1.7 to 2.9	0.16 to 0.65	1.1 to 4.0
		(spin asy.		2	
	E08-027 (JLab)	[309]	р	g_1, g_2	1. to 2.1	3.0×10^{-3} to 1.0	0.02 to 0.4

MUNIVERSITY / VIRGINIA

How does Nucleon Spin Physics Contribute to QCD/Strong Interaction Study? - Observables

- To understand the compositeness how do partons form the nucleon spin? - moments of spin structure functions (SSF)
- perturbative/high-energy/short-distance regime: to verify perturbative QCD calculations - Q² evolution of F_{1,2}, g₁, etc
- non-perturbative/low-energy/long-distance regime: to test effective field theories that use the hadronic degrees of freedom
 SSF moments at very low Q²/long distances
- to provide/test predictions for structure functions
 <u>structure function ratios at large x</u>
- How hadrons arise from quark and gluond degrees of freedom?
 detailed Q2 dependence of SF or SSF moments

focus of this talk

Upcoming Experiments

The A1n and d2n experiments are scheduled to run in Fall 2019 and Spring 2020, using the polarized 3He target in Hall C. These will be the first experiments to use the stage-I upgraded target after the 12 GeV upgrade of JLab

Similar proton measurements will be carried out in Hall B (CLAS12), using an upgraded NH3/ND3 target. It will likely run in or after 2021.

Nucleon (spin) Structure at High x_{Bj}

We need structure function measurements for which QCD can make absolute predictions!

The far valence domain (x>0.5)

involve only valence quarks

- is the only domain where QCD (and many other models) can make absolute predictions for (the ratio of) structure functions
- "the ratio of structure functions at $x \rightarrow 1$ provide unambiguous, scale invariant, non-perturbative features of QCD"

Predictions for A₁ and $\Delta q/q$ at large × $|p^{\uparrow}\rangle = \frac{1}{\sqrt{2}} |u^{\uparrow} (ud)_{00}\rangle + \frac{1}{\sqrt{18}} |u^{\uparrow} (ud)_{10}\rangle - \frac{1}{3} |u^{\downarrow} (ud)_{11}\rangle$ $-\frac{1}{3} |d^{\uparrow} (uu)_{10}\rangle - \frac{\sqrt{2}}{3} |d^{\downarrow} (uu)_{11}\rangle$

Model	$\mathbf{F}_{2}^{\mathbf{n}}/\mathbf{F}_{2}^{\mathbf{p}}$	d∕u	Δ υ/υ	$\Delta d/d$	A ₁ ⁿ	A ₁ ^p
SU(6) = SU3 fbvor + SU2 spin	2 / 3	1 / 2	2 / 3	-1/3	0	5 /9
Valence Quark + Hyperfine	1 / 4	0	1	-1/3	1	1
pQCD + HHC	3 / 7	1 / 5	1	1	1	1
DSE-1 (realistic)	0.49	0.28	0.65	-0.26	0.17	0.59
DSE-2 (contact)	0.41	0.18	0.88	-0.33	0.34	0.88

The only place where models and/or QCD can make absolute predictions for structure functions.

UNIVERSITY of VIRGINIA

X. Zheng, HiX2019, August 16-21, 2019, Crete, Greece

8

Predictions for A_1 and $\Delta q/q$ at large x

hyperfine interaction: the two $\frac{1}{\overline{10}} u^{\uparrow} (ud) \frac{\text{quarks in the spectator di quark prefer to form a S=0 to}$ a S=1 state.

Model	$\mathbf{F}_{2}^{\mathbf{n}}/\mathbf{F}_{2}^{\mathbf{p}}$	d∕u	Δ υ/υ	$\Delta d/d$	A , ⁿ	A ₁ ^p
SU(6) = SU3 f bvor + SU2 spin	2 / 3	1 / 2	2 / 3	-1/3	0	5 /9
Valence Quark + Hyperfine	1 / 4	0	1	-1/3	1	1
pQCD + HHC	3 / 7	1 / 5	1	1	1	1
DSE-1 (realistic)	0.49	0.28	0.65	-0.26	0.17	0.59
DSE-2 (contact)	0.41	0.18	0.88	-0.33	0.34	0.88

The only place where models and/or QCD can make absolute predictions for structure functions.

UNIVERSITY of VIRGINIA

X. Zheng, HiX2019, August 16-21, 2019, Crete, Greece

9

Predictions for A_1 and $\Delta q/q$ at large x

$$|p^{\uparrow}\rangle = \frac{1}{\sqrt{2}} |u^{\uparrow} (ud)_{00}\rangle + \frac{1}{\sqrt{18}} |u^{\uparrow} (ud)_{10}\rangle - \frac{1}{3}$$
$$-\frac{1}{3} |d^{\uparrow} (uu)_{10}\rangle - \frac{\sqrt{2}}{3} |d^{\downarrow} (uu)_{11}\rangle$$

pQCD: the struck quark is free + constraint on the gluon exchange within the diquark \rightarrow the struck quark must carry nucleon's helicity at x \rightarrow 1

Model	$\mathbf{F}_{2}^{n}/\mathbf{F}_{2}^{p}$	d∕∪	Δ υ/υ	$\Delta \mathbf{d}/\mathbf{d}$	A ₁ ⁿ	A ₁ ^P
SU(6) = SU3 f bvor + SU2 spin	2/3	1 /2	2 / 3	-1/3	0	5 /9
Valence Quark + Hyperfine	1 / 4	0	1	-1/3	1	1
pQCD + HHC	3 / 7	1 / 5	1	1	1	1
DSE-1 (realistic)	0.49	0.28	0.65	-0.26	0.17	0.59
DSE-2 (contact)	0.41	0.18	0.88	-0.33	0.34	0.88

The only place where models and/or QCD can make absolute predictions for structure functions.

UNIVERSITY of VIRGINIA

X. Zheng, HiX2019, August 16-21, 2019, Crete, Greece

10

Predictions for A ₁ and $\Delta q/q$ at $ p^{\uparrow}\rangle = \frac{1}{\sqrt{2}} u^{\uparrow} (ud)_{00}\rangle + \frac{1}{\sqrt{18}} u^{\uparrow} (ud)_{10}\rangle - \frac{1}{3} u^{\uparrow} (ud)_{10}\rangle - \frac{1}{3} u^{\uparrow} (uu)_{10}\rangle - \frac{1}{3} u^{\downarrow} (uu)_{10}\rangle - $					A non-perturbative, (low-energy) effective theory. Non-pointlike diquark correlations as a result of dynamical chiral symmetry breaking. Predictions used diquark probabilities extracted from nucleon elastic		
Model	${\bf F}_{2}^{n}/{\bf F}_{2}^{p}$	d/U	Δ υ/υ	$\Delta \mathbf{d}/\mathbf{d}$	A ₁ ⁿ	A ₁ ^p	
SU(6) = SU3 f bvor + SU2 spin	2/3	1 / 2	2 / 3	-1/3	0	5 /9	
Valence Quark + Hyperfine	1 / 4	0	1	-1/3	1	1	
pQCD + HHC	3 / 7	1 / 5	1	1	1	1	
DSE-1 (realistic)	0.49	0.28	0.65	-0.26	0.17	0.59	
DSE-2 (contact)	0.41	0.18	0.88	-0.33	0.34	0.88	

The only place where models and/or QCD can make absolute predictions for structure functions.

MUNIVERSITY of VIRGINIA

11

- Thus, high x "valence quark" region is an ideal case to test our understanding of strong interaction, QCD, and models.
- Why hasn't this been done done already?

- Thus, high x "valence quark" region is an ideal case to test our understanding of strong interaction, QCD, and models.
- Why hasn't this been done done already?
- high $x \rightarrow$ high Q2 \rightarrow smaller x-section \rightarrow low rate
- → high $x \rightarrow \text{small PDF} \rightarrow \text{smaller } x \text{-section} \rightarrow \text{low rate}; x=1 \text{ means } x \text{sec=0}!$

- Thus, high x "valence quark" region is an ideal case to test our understanding of strong interaction, QCD, and models.
- Why hasn't this been done done already?
- high $x \rightarrow$ high Q2 \rightarrow smaller x-section \rightarrow low rate
- → high $x \rightarrow$ small PDF \rightarrow smaller x-section \rightarrow low rate; x=1 means xsec=0!

- Thus, high x "valence quark" region is an ideal case to test our understanding of strong interaction, QCD, and models.
- Why hasn't this been done done already?
- high $x \rightarrow$ high Q2 \rightarrow smaller x-section \rightarrow low rate
- high $x \rightarrow \text{small PDF} \rightarrow \text{smaller } x \text{-section} \rightarrow \text{low rate}$

- \checkmark need high intensity beam → JLab
- $\checkmark\,$ need dense polarized nucleon target $\rightarrow\,$ polarized NH3, ND3, polarized 3He with high polarization

The 6 GeV Hall A Measurement (21 PAC days, 2001)

A non-perturbative, (low-energy) effective theory. Non-pointlike diquark correlations as a result of dynamical chiral symmetry breaking. Predictions used diquark probabilities extracted from nucleon elastic form factors

pQCD: the struck quark is free + constraint on the gluon exchange within the diquark \rightarrow the struck quark must carry nucleon's helicity at x \rightarrow 1

now added quark OAM, but ∆d/d still must be 1 at x=1

- Thus, high x "valence quark" region is an ideal case to test our understanding of strong interaction, QCD, and models.
- Why hasn't this been done done already?
- high $x \rightarrow$ high Q2 \rightarrow smaller x-section \rightarrow low rate
- high $x \rightarrow \text{small PDF} \rightarrow \text{smaller } x \text{-section} \rightarrow \text{low rate}$

- \checkmark need high intensity beam → JLab
- $\checkmark\,$ need dense polarized nucleon target $\rightarrow\,$ polarized NH3, ND3, polarized 3He with high polarization
- ✓ need higher energy to reach high $x \rightarrow JLab$ 12 GeV upgrade
- Even smaller x-section \rightarrow polarized 3He target upgrade.

Reaching Deeper Valence Quarks Region with 12 GeV

12 GeV A_1^n in Hall C

- First proposed in 2006 (simplified simulation), rated as high-impact in 2009;
- 30 uA 11 GeV polarized beam on 20-cm long polarized 3He target (~10atm)
- HMS and SHMS detect scattered electrons independently

Expected Results

CLAS12 with 80 days

See next talk by S. Kuhn !

Hall C with 36 "PAC" days assuming Pb=85%, Ptarg=55%

UNIVERSITY of VIRGINIA

Spokespeople: Gordon Cates, JP Chen, Zein-Eddine Mezianni, X. Zheng;

Ph.D. students: Mingyu Chen (UVa), Melanie Rehfuss (Temple);

Postdocs: Arun Tadepalli (JLab), Jixie Zhang (UVa) + others

> CLAS12 proton expected results:

> > See next talk by S. Kuhn !

Extracting $\Delta q/q$ from both proton and neutron (³He) data

MIVERSITY / VIRGINIA

Extracting $\Delta q/q$ from both proton and neutron (³He) data

UNIVERSITY of VIRGINIA

Extracting $\Delta q/q$ from both proton and neutron (³He) data

I happened to have a phone conversation with one of my theorist friends one day. It went like this:

Th: "how are you doing? What are you working on these days?" Me: "going slow, nobody has time to do anything while teaching, but A1n is coming up online this year."

- Th: "Oh really? So you are going to see delta d/d turning positive?"
- Me: "Why? We need to measure it. What if it stays negative? I have a feeling it will."
- Th: "No it can't. If it doesn't turn positive we will all be in trouble..."

I have since wondered what kind of trouble we will be in.

X. Zheng,

Stage-I Polarized 3He Target Upgrade

Polarized 3He target using spin-exchange optical pumping (SEOP) technique;

6 GeV era: reached 55%, 15uA, 40cm, 10amg;

11 GeV era:

stage I upgrade: 55% in beam , 30uA, 40cm, 10amg; (Hall C A1n/d2n)

stage II upgrade: 60% in beam, 60uA, 40cm, 10amg; (SBS GEn)

First production A1ⁿ target: Savior

Current Target Cell Status for A1n/d2n

Cell	Birthday	cold spin	Max	Expected in-	-Current status
name	(fill date)	down lifetime	polarization	beam polarization	
		(hrs)			
Savior (?))2016	42 (UVa);	65%	60% → ?	possible laser
		28 (JLab)	(UVa); ?		damage, back to UVa
			(JLab)		for re-testing
Fulla	9/7/2019	17 (UVa);	53% (UVa);	50%	in oven at JLab,
		15 (JLab)	54% (JLab)		finishing up
Brianna	3/27/2019	23 (UVa)	53% (UVa)	48%	possible laser
					damage
Flurence	9/28/2018	11 (UVa)	45% (UVa)	44%	-

Other cells made: Elle, Sandy-II, Phoenix, Zoe;

Both UVa and W&M groups making new cells around the clock;

Cell testing around the clock for the past weeks (JLab, UVa Gordon Cates' group);

Will start moving the target into Hall C on Monday;

Summary and Outlook

- The upcoming (2019-2020) A₁ experiments in Hall C (neutron) will venture into a deeper valence quark region.
- Four Ph.D. students committed to two experiments A1n+d2n. Three have been working on the target for 2-3 years. In addition Chris Jantz UVa will be the Ph.D. student focusing on target upgrade (cell making + testing).
- At the moment, we are preparing for target installation.
- Experiment planned to start before Thanksgiving 2019 with A1n high x/high Q2 settings until ? Feb/March 2020 (with a 20-day break for X'mas + restore), then rotate the target coils, then run A1n low x/low Q2 settings and d2n. If all goes well, will run until May 2020.
- Shift schedule will be up later, please come take some shifts. Good food promised, and maybe even Turkey dinner!

