MARATHON A = 3 EMC effect Preliminary Results

Florian Hauenstein, Old Dominion University HiX 2019 09/19/19

The EMC Effect in DIS Scattering

Quark distributions (F₂) in nucleons bound in nuclei different to distributions in free nucleons, here: $F_2^C \neq 6 * F_2^d$

EMC Effect in Different Nuclei

EMC Models

Mean Field Modifications

Short Range Correlations (SRC)

A = 3 System and EMC Effect

- Mirror Nuclei
- High Asymmetry A/2Z = 1.5
- Isospin Doublet

MARATHON Target

- Tritium
- Helium-3
- Deuterium
- Hydrogen
- Empty Cell

- Sealed cell
- 25cm long
- 40K cold gas
- 1kCu Tritium

Electrons from CEBAF

- 10.6 GeV energy
- 22.5uA current
- 2x2mm² rastered beam

HallA Spectrometer

- Δ p/p: $\pm 5\%$
- In-plane angle: ±30 mrad
- Out-plane angle: ±60 mrad
- Electron Trigger: Scintillators (S0&S2) && Gas Cherenkov

MARATHON Data

- 10.6 GeV beam energy
- LHRS momentum 3.1 GeV
- RHRS momentum 2.9 GeV (due to magnet problems)
- HRS angles between 17° to 36°
- 0.19 < x < 0.83

Tritium Decay

$$\tau(^3H) = 4600 \pm 8 \text{ days}$$

Contamination

$$c = \frac{\eta_{^{3}\text{He}}(t)}{\eta_{\text{tot}}}$$

Correction:

$$\sigma_{^{3}\text{H}} = \left(\frac{\sigma_{\text{tot}}}{\sigma_{^{3}\text{He}}}\right) \left(\frac{1}{1-c}\right) - \frac{c}{1-c}$$

Target Background from Endcaps

z-vertex [cm]

- Background around 2-3%
- Similar for all targets

Credit: Tong Su

Target Boiling

S.N. Santiesteban, S. Alsalmi et al., NIM A950, 351 (2019)

- Beam heats target —> Density changes due to boiling
- Larger boiling for Tritium than Helium
- Correction factor for each run file

Positron Contamination

- γ decay to e+e- pairs
- Measure positrons to account for pairs
- HRS measurement in low-x kinematics
- Exponential fit to extrapolate to high-x

Results

Raw EMC Ratios

- No normalizations
- No Isoscaler corrections
- -> 3He EMC from MARATHON and HallC agrees

Isoscalar EMC Results with Normalization

- ³H normalized by -0.4%
- ³He normalized by 2.4%
- Isoscalar correction from MARATHON F₂(n/p)

All following plots from MARATHON have these normalizations!

³He EMC Isoscalar Corrections

 different Isoscalar corrections from Marathon and HallC

 MARATHON Isoscalar corrections applied to both data sets

³He EMC

- MARATHON Isoscaler corrections applied
- HallC data scaled as in KP paper (PRC82, 054614 (2010))

A = 3 EMC - Comparison with Theories

- No isoscalar correction applied
- No scaling on Seely data (crosses)
- E. Segarra et al., arXiv:1908.02223 (2019)
- A. Tropiano et al., PRC 99, 035201 (2019)

$F_2^{^3\mathrm{He}}/F_2^{^3\mathrm{H}}$ Ratio

E. Segarra et al., arXiv:1908.02223 (2019)

A. Tropiano et al., PRC 99, 035201 (2019)

Back up slides

Target Boiling - All targets

S.N. Santiesteban, S. Alsalmi et al., NIM A950, 351 (2019)

³He EMC: Same Normalization Factor

³He: Isoscalar Corrections Comparison

Full Predictions from Nuclear-DIS model

- HallC data normalized by 1.4%
- E. Segarra et al., arXiv:1908.02223 (2019)

TEMS Predictions

- The CJ lines were plotted before and in Segarra et al.
- CJ_{non-iso} curve is from $\delta f^p \neq \delta f^n$

A. Tropiano, J. Ethier, W. Melnitchouk, N. Sato, PRC 99, 035201 (2019)

EMC and SRC Correlation

Weinstein et al., PRL 106, 052301 (2011), Hen et al., PRC 85, 047301(2012)

