Parton distribution functions of π and K from Drell-Yan and J/ Ψ production

Jen-Chieh Peng

University of Illinois at Urbana-Champaign

HIX-2019 Kolympari, Crete, August 16-21, 2019

<u>Outline</u>

- Overview of experiments probing the meson parton distributions (Drell-Yan, J/ Ψ production, direct photon production) with meson beams
- Status and Plans at COMPASS on meson PDFs
- Prospect for measuring exclusive Drell-Yan reaction at J-PARC

The Drell-Yan Process

MASSIVE LEPTON-PAIR PRODUCTION IN HADRON-HADRON COLLISIONS AT HIGH ENERGIES*

Sidney D. Drell and Tung-Mow Yan

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305

(Received 25 May 1970)

$$p + p - (\mu^+ \mu^-) + \cdots$$
 (1)

Our remarks apply equally to any colliding pair such as (pp), $(\overline{p}p)$, (πp) , (γp) and to final leptons $(\mu^+\mu^-)$, $(e\overline{e})$, $(\mu\nu)$, and $(e\nu)$.

(4) The full range of processes of the type (1) with incident p, \overline{p} , π , K, γ , etc., affords the interesting possibility of comparing their parton and antiparton structures.

List of Drell-Yan experiments with π^- beam Experiments at CERN and Fermilab

Exp	P (GeV)	targets	Number of D-Y events
WA11	175	Be	500 (semi-exclusive)
WA39	40	W (H ₂)	3839 (all beam, M > 2 GeV)
NA3	150, 200, 280	Pt (H ₂)	21600, 4970, 20000 (535, 121, 741)
NA10	140, 194, 286	W (D ₂)	~84400, ~150000, ~45900 (3200,, 7800)
E331/E444	225	C, Cu, W	500
E326	225	W	
E615	80, 252	W	4060, ~50000

• Relatively pure π^- beam; J/ Ψ production also measured

• Relatively large cross section due to $\overline{u}d$ contents in $\pi_{\overline{4}}$

List of Drell-Yan experiments with π^+ beam

Exp	P (GeV)	targets	D-Y events
WA39	40	W (H ₂)	
NA3	200	Pt (H ₂)	1750 (40)
E331/E444	225	C, Cu, W	

- Require beam particle identification to reject large proton content
- Smaller DY cross section due to \overline{du} contents in π^+
- Very few DY data with π^+ beam

Drell-Yan experiments with K^- beam

Exp	P (GeV)	targets	D-Y events
WA39	40	W (H ₂)	
NA3	150, 200	Pt	688, 90

Drell-Yan experiments with K^+ beam

Exp	P (GeV)	targets	D-Y events
WA39	40	W (H ₂)	
NA3	200	Pt	170

Drell-Yan experiments with \bar{p} beam

Exp	P (GeV)	targets	D-Y events
WA39	40	W (H ₂)	
NA3	150, 200	Pt	275, 32
E537	125	W, Cu, Be	380

$(\pi^- + W)$ versus $(\overline{p} + W)$ Drell-Yan cross sections

Valence quark *x*-distribution in pion is broader than that in antiproton (proton)

Ratio of $(\pi^- + A)/(p + A)$ Drell-Yan cross sections

How to determine the valence quark distribution in pion?

Compare $(\pi^- + D)$ with $(\pi^+ + D)$ Drell-Yan cross sections

 $\sigma_{DY}(\pi^{-} + D) \propto 4V_{\pi}(x_{1})V_{N}(x_{2}) + 5S_{\pi}(x_{1})V_{N}(x_{2}) + 5V_{\pi}(x_{1})S_{N}(x_{2}) + 10S_{\pi}(x_{1})S_{N}(x_{2})$ $\sigma_{DY}(\pi^{+} + D) \propto V_{\pi}(x_{1})V_{N}(x_{2}) + 5S_{\pi}(x_{1})V_{N}(x_{2}) + 5V_{\pi}(x_{1})S_{N}(x_{2}) + 10S_{\pi}(x_{1})S_{N}(x_{2})$

$$\sigma_{DY}(\pi^- + D) - \sigma_{DY}(\pi^+ + D) \propto 3 V_{\pi}(x_1) V_N(x_2)$$

Only the valence-quark term remain!

Only very low statistics data for $\sigma_{DY}(\pi^+ + D)$ are available!

Hence only $\sigma_{DY}(\pi^- + A)$ data are utilized

See Londergan et al., PL B361 (1995) 110

Attemps to extract the pion valence quark distribution

How to determine the sea quark distribution in pion?

Compare $(\pi^- + D)$ with $(\pi^+ + D)$ Drell-Yan cross sections

 $\sigma_{DY}(\pi^{-} + D) \propto 4V_{\pi}(x_{1})V_{N}(x_{2}) + 5S_{\pi}(x_{1})V_{N}(x_{2}) + 5V_{\pi}(x_{1})S_{N}(x_{2}) + 10S_{\pi}(x_{1})S_{N}(x_{2})$ $\sigma_{DY}(\pi^{+} + D) \propto V_{\pi}(x_{1})V_{N}(x_{2}) + 5S_{\pi}(x_{1})V_{N}(x_{2}) + 5V_{\pi}(x_{1})S_{N}(x_{2}) + 10S_{\pi}(x_{1})S_{N}(x_{2})$

$$4\sigma_{DY}(\pi^{+}+D) - \sigma_{DY}(\pi^{-}+D)$$

\$\approx 15S_{\pi}(x_1)V_{\not}(x_2) + 15V_{\pi}(x_1)S_{\not}(x_2) + 30S_{\pi}(x_1)S_{\not}(x_2)\$
\$S_{\pi}(x_1)\$ can be extracted

Only very low statistics data for $\sigma_{DY}(\pi^+ + D)$ are available!

Hence only $\sigma_{DY}(\pi + A)$ data are utilized

Determine the sea quark distribution of pion in NA3

Dashed curve: without the pion sea contribution Solid curve: including the pion sea contribution How to determine the gluon distribution in pion?

- J/Ψ production with pion beam
- Direct photon production with pion beam
- Charm production with pion beam
- Q²-evolution of pion PDFs

Diagrams for charm and J/Ψ production

- First: OW-P (PRD 30, 943 (1984))
 - LO QCD
 - J/ $\!\Psi$ data from NA3 and WA39
 - D-Y data from E537 and NA3

- Second: ABFKW-P (PL 233, 517 (1989))
 NLO QCD
 - Direct photon data from WA70 and NA24
 - Sea-quark distribution from NA3

- Third: GRV-P (Z. Phys. C53, 651 (1992))
 - Only valence and valence-like gluon at initial scale. Sea is entirely from QCD evolution
 - Valence distribution from fit to direct photon data

- Fourth: SMRS (PR D45, 2349 (1992))
 - NLO QCD
 - NA10 and E615 D-Y data
 - WA70 direct photon data
- Need new global fits to all existing data
- Need new experimental data with pion and kaon beams

Recent extraction of pion PDF using a statistical model

Bourrely and Soffer (NP A981 (2019) 118)

Definitions of the pion PDFs $U = u_{\pi^+} = \bar{u}_{\pi^-}, D = \bar{d}_{\pi^+} = d_{\pi^-}, \bar{U} = \bar{u}_{\pi^+} = u_{\pi^-}, \bar{D} = d_{\pi^+} = \bar{d}_{\pi^-}.$ (1)

This paper assumes that U and D can be different; \overline{U} and \overline{D} can also be different

$$xQ^{\pm}(x) = \frac{A_Q X_Q^{\pm} x^{b_Q}}{\exp[(x - X_Q^{\pm})/\bar{x}] + 1},$$
(2)

$$A_U = 0.537 \pm 0.100, \ A_D = 0.346 \pm 0.050, b_U = 0.048 \pm 0.001, \ b_D = 0.466 \pm 0.014,$$
(12)

and four potentials

$$X_U^+ = 0.787 \pm 0.007, \ X_U^- = 0.185 \pm 0.030, X_D^+ = 0.866 \pm 0.024, \ X_D^- = 0.718 \pm 0.044.$$
(13)

19

Data allow a large charge-symmetry breaking at a partonic level $\frac{20}{20}$

More studies and data are needed to check this surprising and interesting result

First Monte Carlo global QCD analysis of pion parton distributions

P. C. Barry,¹ N. Sato,² W. Melnitchouk,³ and Chueng-Ryong Ji¹

¹North Carolina State University, Raleigh, North Carolina 27607, USA ²University of Connecticut, Storrs, Connecticut 06269, USA ³Jefferson Lab, Newport News, Virginia 23606, USA

Jefferson Lab Angular Momentum (JAM) Collaboration

PRL 121, 152001 (2018)

- Drell-Yan data from NA10 and E615
- Leading-neutron tagged DIS from HERA (H1 and ZEUS) provides information on the pion PDFs at small *x*
- Uncertainties of the pion PDFs are determined

Implications of the JAM results

The tagged-DIS data significantly reduce the uncertainty of the pion PDFs
Further measurements of tagfed-DIS can be pursued at 12 GeV and EIC

Can one extract meson PDFs from J/Ψ production?

Difference between $(\pi^- + p)$ and $(\pi^+ + p) J / \Psi$ cross sections

 $\sigma_{J/\Psi}(\pi^{-}+p) \propto V_{\pi}(x_{1})[u(x_{2})+\overline{d}(x_{2})] + S_{\pi}(x_{1})[u(x_{2})+d(x_{2})+\overline{u}(x_{2})+\overline{d}(x_{2})]$ $\sigma_{J/\Psi}(\pi^{+}+p) \propto V_{\pi}(x_{1})[d(x_{2})+\overline{u}(x_{2})] + S_{\pi}(x_{1})[u(x_{2})+d(x_{2})+\overline{u}(x_{2})+\overline{d}(x_{2})]$

$$\sigma_{J/\Psi}(\pi^- + p) - \sigma_{J/\Psi}(\pi^+ + p) \propto V_{\pi}(x_1)[u_V(x_2) - d_V(x_2)]$$

Only the valence-quark term remains!

 $\sigma_{J/\Psi}(\pi^- + p) - \sigma_{J/\Psi}(\pi^+ + p)$ is positive Directly proportional to $u_V(x_2) - d_V(x_2)$ Directly proportional to $V_{\pi}(x_1)$

Are there relevant data already?

Data from the NA3 paper and Ph.D thesis

Comparison between the NA3 data and CEM calculations based on current pion and nucleon PDFs

26

How to determine the valence quark distribution in kaon?

Compare $(K^- + D)$ with $(K^+ + D)$ Drell-Yan cross sections

$$\sigma_{DY}(K^{-}+D) \propto 4V_{K}^{u}(x_{1})V_{N}(x_{2}) + 4V_{K}^{u}(x_{1})S_{N}(x_{2}) + V_{K}^{s}(x_{1})\overline{s}_{N}(x_{2}) + 5S_{K}(x_{1})V_{N}(x_{2}) + 10S_{K}(x_{1})S_{N}(x_{2}) + 2S_{K}(x_{1})\overline{s}_{N}(x_{2})$$

$$\sigma_{DY}(K^{+}+D) \propto 4V_{K}^{u}(x_{1})S_{N}(x_{2}) + V_{K}^{s}(x_{1})\overline{s}_{N}(x_{2}) + 5S_{K}(x_{1})V_{N}(x_{2}) + 10S_{K}(x_{1})S_{N}(x_{2}) + 2S_{K}(x_{1})\overline{s}_{N}(x_{2})$$

$$\sigma_{DY}(K^- + D) - \sigma_{DY}(K^+ + D) \propto 4V_K^u(x_1)V_N(x_2)$$

Only the valence-quark term remain!

See Londergan et al., PL B380 (1996) 393

Kaon PDF from $(K^- + Pt) / (\pi^- + Pt)$ Drell-Yan ratios

From NA3; 150 GeV, Pt target

$$R = \frac{\sigma_{DY}(K^{-} + D)}{\sigma_{DY}(\pi^{-} + D)}$$

$$\simeq \frac{4V_{K}^{u}(x_{1})V_{N}(x_{2}) + 4V_{K}^{u}(x_{1})S_{N}(x_{2}) + V_{K}^{s}(x_{1})s_{p}(x_{2}) + 5S_{K}(x_{1})V_{N}(x_{2})}{4V_{\pi}(x_{1})V_{N}(x_{2}) + 5S_{\pi}(x_{1})V_{N}(x_{2}) + 5V_{\pi}(x_{1})S_{N}(x_{2})} \simeq \frac{V_{K}^{u}(x_{1})}{V_{\pi}(x_{1})}$$

 $R \simeq (1-x)^{0.18 \pm 0.07} \Longrightarrow$ softer *u*-valence in kaon than in pion ₂₈

$(K^- + Pt) / (\pi^- + Pt)$ ratios for J/ Ψ production

From NA3; 150 GeV, Pt target

Ratios for D-Y

Ratios for J/Ψ

Similar behavior at large x_F for D-Y and J/ Ψ production?

J/Ψ production in the Color Evaporation Model

 $\pi^- + \operatorname{Pt} \rightarrow J / \Psi + x$

 $K^- + \operatorname{Pt} \rightarrow J / \Psi + x$

 $q - \overline{q}$ annihilation is important at large x_F

Comparison between color-evaporation model calculation and data

Black solid curve:

same PDF for π^- and K^- in LO

Red dashed curve: Modified K^- pdf $\overline{u}_K^V(x) = 1.061 \overline{u}_\pi^V(x) (1-x)^{0.203}$ $s_K^V(x) = 0.937 \overline{u}_\pi^V(x) (1-x)^{-0.203}$

JCP, Chang, Platchkov, Sawada: 1711.00839

The J/ Ψ data also suggest a softer *u*-valence in kaon than in pion

New π^- + A Drell-Yan data collected at COMPASS

190 GeV π^- beam on NH₃ and W targets covering the kinematic range $0.15 < x_{\pi} < 0.9$

Plan for new Drell-Yan measurments with π^+ and π^- beams at COMPASS

(using solid carbon and W targets)

Beam type (GeV)	Beam intensity (part/sec)	Target type	DY mass (GeV/c^2)	DY events
π^{+} 190	1.7×10^{7}	$100 \mathrm{cm} \mathrm{C}$	4.3 - 8.5	23000
			3.8 - 4.3	14000
			2.0 - 3.8	133000
π^{-} 190	6.8×10^{7}	100cm C	4.3 - 8.5	22000
			3.8 - 4.3	12000
			2.0 - 3.8	127000
π^{+} 190	0.2×10^{7}	$24 \mathrm{cm} \mathrm{W}$	4.3 - 8.5	7000
			3.8 - 4.3	4000
			2.0 - 3.8	40000
π^{-} 190	1.0×10^{7}	$24 \mathrm{cm} \mathrm{W}$	4.3 - 8.5	6000
			3.8 - 4.3	3000
			2.0 - 3.8	39000

- This would represent a major increase for DY data with π^+ beam
- Intense kaon beams with RF-separator are also been actively considered

Exclusive dilepton production in πN interaction

$$\pi^- p \to \gamma^* n \to \mu^+ \mu^- n$$

E. Berger, M. Diehl, B. Pire, Phys. Lett. B523 (2001) 265

Probe pion distribution amplitude (ϕ_{π}) and nucleon GPD (\tilde{H}, \tilde{E})

Extraction of GPDs Space-like vs. Time-like Processes

Muller et al., PRD 86 031502(R) (2012)

PHYSICAL REVIEW D 93, 114034 (2016)

Accessing proton generalized parton distributions and pion distribution amplitudes with the exclusive pion-induced Drell-Yan process at J-PARC

Summary

- Pion and Kaon parton distributions
 - * New territory for theory and experiment
 - * Unique opportunities at COMPASS, JLab, J-PARC, and EIC
- J/ψ production provides useful information on kaon quark and gluon contents
 - * Existing data suggests different valence distribution in kaon and pion
 - * Existing data suggests different gluon distribution in kaon and pion
- Exclusive DY and exculsive J/ψ production with meson beams to probe meson distribution amplitudes and nucleon GPD