Hadron PDFs in the valence region A DSE viewpoint

Ian Cloët Argonne National Laboratory

5th International Workshop on Nucleon Structure at Large Bjorken-x (HiX 2019)

16 – 21 August 2019, Orthodox Academy of Crete, Crete

Office of Science

Pion PDF Puzzle – Much Ado About Nothing

Longstanding perturbative QCD prediction that pion PDF near $x = 1$ behaves as

$$
q_{\pi}(x) \simeq (1-x)^{2+\gamma_q(\mu^2)}
$$

Since large-x quarks are the source of large-x gluons, near $x = 1$ expect

 $g_{\pi}(x) \simeq (1-x)^{3+\gamma_g(\mu^2)}$

- However, pion-induced DY data, and a recent re-analysis that also included leading-neutron data, seem to prefer $q(x) \sim (1-x)^1$ near $x = 1$
- 0 ◯ Potential resolution to this "puzzle" provided by Aicher *et al.* \implies soft-gluon resummation

However, pQCD predictions need only set in very near $x = 1$ *, the observed* $q(x) \simeq (1-x)^1$ *behavior could be real where data exists*

Pion PDF Puzzle – Much Ado About Nothing

Longstanding perturbative QCD prediction that pion PDF near $x = 1$ behaves as

$$
q_{\pi}(x) \simeq (1-x)^{2+\gamma_q(\mu^2)}
$$

Since large-x quarks are the source of large-x gluons, near $x = 1$ expect

 $g_{\pi}(x) \simeq (1-x)^{3+\gamma_g(\mu^2)}$

- However, pion-induced DY data, and a recent re-analysis that also included leading-neutron data, seem to prefer $q(x) \sim (1-x)^1$ near $x = 1$
- ◯ Potential resolution to this "puzzle" 0.001 provided by Aicher *et al.* \implies soft-gluon resummation

However, pQCD predictions need only set in very near $x = 1$ *, the observed* $q(x) \simeq (1-x)^1$ *behavior could be real where data exists*

DSEs + Pion PDFs

- DSE prediction [Hecht (2001); etc] that $q_{\pi}(x) \simeq (1-x)^2$ as $x \to 1$
	- related to $1/k^2$ dependence of BSE kernel at large relative momentum
- Previous DSE PDF calculations have used Ward-identity ansatz (WIA)

$$
\Lambda_q(z, p, n) \to \Lambda_q^{\text{WIA}}(z, p, n) = \delta (1 - z) n^{\mu} \frac{\partial}{\partial p^{\mu}} S_q^{-1}(p)
$$

- WIA respects baryon sum rule but not higher moments e.g. momentum sum rule
- momentum is not distributed correctly between quarks and gluons

\n- Aicher:
$$
g_{\pi}(x) \sim (1-x)^{1.3}
$$
 as $x \to 1$
\n- pQCD predicts: $g_{\pi}(x) \sim (1-x)^3$
\n

Inconsistencies in Aicher & DSE results

Pion / Kaon + High-priority science questions

- The NAS *Assessment of a U.S. based Electron-Ion Collider* identified three high-priority science questions
	- How does the mass of the nucleon arise?
	- How does the spin of the nucleon arise? \bullet
	- What are the emergent properties of dense systems of gluons?
- The pion and kaon can be understood as a bound state of a *dressed-quark* and a *dressed-antiquark* in QFT, but are also Goldstone modes associated with DCSB in QCD
- The dynamical breaking of chiral symmetry (DCSB) in QCD gives rise to \sim 500 MeV mass splittings in hadron spectrum & massless Goldstone bosons in chiral limit (π , K, η)
- Therefore, understanding the nucleon mass is not sufficient • must also understand the mass of the pion (ud, \dots) and kaon $(u\overline{s}, \dots)$

Hadron Masses in QCD

Quark/gluon contributions to masses (& angular momentum) are accessed via matrix elements of QCD's (symmetric) energy-momentum tensor

$$
T^{\mu\nu} = T^{\nu\mu}, \qquad \partial_{\mu} T^{\mu\nu} = \partial_{\mu} T^{\mu\nu}_q + \partial_{\mu} T^{\mu\nu}_g = 0, \qquad T^{\mu\nu} = \frac{\overline{T}^{\mu\nu}}{\text{[traceless]}} + \frac{\widehat{T}^{\mu\nu}}{\text{[trace]}}
$$

The trace piece of $T^{\mu\nu}$ takes the form (un-renormalized)

At zero momentum transfer

$$
\langle p|T^{\mu\nu}|\,p\rangle=2\,p^\mu p^\nu\quad\Longrightarrow\quad\langle p\left|T^\mu_\mu\right|p\rangle=2\,m^2
$$

• in chiral limit entire hadron mass from gluons!

e.g., Dmitri Kharzeev – Proton Mass workshops at Temple University and ECT[∗]

Understanding difference in pion/kaon and proton is key to hadron masses:

$$
\left\langle \pi \left|T^\mu_\mu\right|\pi\right\rangle = 2\,m_\pi^2 \stackrel{\text{chiral limit}}{\rightarrow} 0, \qquad \quad \left\langle N \left|T^\mu_\mu\right|N\right\rangle = 2\,m_N^2
$$

Rest Frame Hadron Mass Decompositions

Xiangdong Ji proposed hadron mass decomposition [PRL ⁷⁴, 1071 (1995); PRD ⁵², 271 (1995)]

$$
m_p = \frac{\langle p | \int d^3x T^{00}(0, \vec{x}) | p \rangle}{\langle p | p \rangle} \Big|_{\text{at rest}} = \underbrace{M_q + M_g}_{\text{quark and gluon energies}} + \underbrace{M_m}_{\text{quark mass}} + \underbrace{M_a}_{\text{trace anomaly}}
$$

$$
M_q = \frac{3}{4} (a - b) m_p, \quad M_g = \frac{3}{4} (1 - a) m_p, \quad M_m = b m_p, \quad M_a = \frac{1}{4} (1 - b) m_p,
$$

 $a =$ quark momentum fraction, b related to sigma-term or anomaly contribution • [See Cédric Lorcé, EPJC 78, (2018) for decomposition with pressure effects]

In chiral limit ($m_q \to 0$) pion has no rest frame ($m_\pi = 0$) – how to interpret Ji's pion mass decomposition? Limit as $m_q \to 0$ is likely well behaved.

What we know about the Pion and Kaon

Pion and kaon structure is slowly being revealed using: π^-/K^- beams at CERN; Sullivan type experiments at Jefferson Lab; π^- beam at Fermilab; and $e^+e^- \to \pi^+\pi^-$, K^+K^- in the time-like region

40 years of experiments has revealed, e.g.

• $r_{\pi^+} = 0.672 \pm 0.008$, $r_{K^+} = 0.560 \pm 0.031$, $r_{K^0} = -0.277 \pm 0.018$

Still a lot more to learn about pion and kaon structure:

• quark and gluon PDFs; TMDs including Boer-Mulders function; $q, q \rightarrow \pi/K$ fragmentation functions, quark and gluon GPDs; gravitational form factors

What we know about the Pion and Kaon

Pion and kaon structure is slowly being revealed using: π^-/K^- beams at CERN; Sullivan type experiments at Jefferson Lab; π^- beam at Fermilab; and $e^+e^- \to \pi^+\pi^-$, K^+K^- in the time-like region

40 years of experiments has revealed, e.g.

• $r_{\pi^+} = 0.672 \pm 0.008$, $r_{K^+} = 0.560 \pm 0.031$, $r_{K^0} = -0.277 \pm 0.018$

Still a lot more to learn about pion and kaon structure:

• quark and gluon PDFs; TMDs including Boer-Mulders function; $q, q \rightarrow \pi/K$ fragmentation functions, quark and gluon GPDs; gravitational form factors

Pion & Kaon Structure at JLab and an EIC

- At Jefferson Lab and an EIC pion and kaon structure can be accessed via the so-called *Sullivan* processes
	- initial pion/kaon is off mass-shell need extrapolation to pole
	- existing results for form factors what about quark and gluon PDFs, TMDs, GPDs, *etc*, at an EIC?
- Explored this ideal at a series of workshops on "*Pion and Kaon Structure at an Electron–Ion Collider*" (PIEIC)
	- \bullet 1−2 June 2017, Argonne National Laboratory www.phy.anl.gov/theory/pieic2017/
	- 24−25 May 2018, The Catholic University of America www.jlab.org/conferences/pieic18/
- Drell-Yan also very nice way to measure pion/kaon structure

QCD's Dyson-Schwinger Equations

- The equations of motion of QCD \Longleftrightarrow QCD's Dyson–Schwinger equations
	- an infinite tower of coupled integral equations
	- tractability \implies must implement a symmetry preserving truncation
- The most important DSE is QCD's gap equation \implies quark propagator

$$
\rightarrow
$$

• ingredients – dressed gluon propagator & dressed quark-gluon vertex

$$
S(p)=\frac{Z(p^2)}{ip+M(p^2)}
$$

- Mass function, $M(p^2)$, exhibits dynamical mass generation, even in chiral limit
	- *mass function is gauge dependent and therefore NOT an observable!*
- *Hadron masses are generated by dynamical chiral symmetry breaking – caused by a cloud of gluons dressing the quarks and gluons*

Calculating and Predicting Pion Structure

In QFT a two-body bound state (e.g., a pion, kaon, etc) is described by the Bethe-Salpeter equation (BSE):

- 11 • the kernel must yield a solution that encapsulates the consequences of DCSB, e.g., in chiral limit $m_{\pi} = 0 \& m_{\pi}^{2} \propto m_{u} + m_{d}$
- Pion Bethe-Salpeter vertex

$$
\Gamma_{\pi}(p,k) = \gamma_5 \Big[E_{\pi}(p,k) + \rlap{\,/}p F_{\pi}(p,k) + \rlap{\,/}k k \cdot p G_{\pi}(p,k) + i \sigma^{\mu\nu} k_{\mu} p_{\nu} H_{\pi}(p,k) \Big]
$$

- $\chi_{\rm BSE} = S(k + \frac{1}{2}p) \Gamma_{\pi}(p, k) S(k \frac{1}{2}p)$
- large relative momentum: $E_{\pi} \sim F_{\pi} \sim 1/k^2$ \bullet

Challenging to go beyond rainbow-ladder trunction and maintain symmetries

 0° 10 20

 $0.6₁$ $0.8\vert\cdot$

 $\frac{2}{\alpha}$ $\frac{0.4}{\alpha}$

 \hat{p} $\cdot \hat{k}$)

0,⊨ 0.2 $E_{\kappa}^{2.0.4}$

 k^2

z

Pion & Kaon PDFs

Pion PDFs – Self-Consistent DSE Calculations

To self-consistently determine hadron PDFs in rainbow-ladder must sum all planar diagrams

$$
q(x) \propto \text{Tr} \int \frac{d^4p}{(2\pi)^4} \overline{\Gamma}_M(p, P) S(p)
$$

$$
\times \Gamma_q(x, p, n) S(p) \Gamma_M(p, P) S(p - P)
$$

- DSEs are formulated in Euclidean space evaluate $q(x)$ by taking moments
- The *hadron dependent* vertex $\Gamma_q(x, p, n)$ satisfies an inhomogeneous BSE
- However can define a *hadron independent* vertex $\Lambda_q(x, p, n)$

$$
\Gamma_q(x, p, n) = \iint dy dz \, \delta(x - yz) \, \delta\left(y - \frac{p \cdot n}{P \cdot n}\right) \Lambda_q(z, p, n)
$$

 $\Lambda_a(x, p, n)$ satisfies the inhomogeneous BSE

$$
\begin{split} \Lambda_q(z,p,n) = i Z_2 \, &\text{\#} \, \delta(1-z) - \int\!\!\!\int du \, dw \, \delta(z - uw) \int \!\!\frac{d^4\ell}{(2\pi)^4} \delta\!\left(w - \frac{\ell \cdot n}{p \cdot n}\right) \\ &\times \gamma_\mu \, \mathcal{K}_{\mu\nu}(p-\ell) \, S(\ell) \, \Lambda_q(u,\ell,n) \, S(\ell) \, \gamma_\nu \end{split}
$$

PDFs of a Dressed Quark

Hadron independent vertex has form

$$
\Lambda_q(z, p, n) = i\psi \delta(1-z) + i\psi f_1^q(z, p^2)
$$

$$
+ n \cdot p \left[i\psi f_2^q(z, p^2) + f_3^q(z, p^2) \right]
$$

- the functions $f_i^q(z, p^2)$ can be interpreted as unpolarized PDFs in a dressed quark of virtuality p^2
- These functions are universal appear in all RL-DSE unpolarzied PDF calculations
- Distributed support in z is immediate indication gluons carry significant momentum
	- heavier s quark support nearer $z = 1$
	- WIA $\implies \Lambda_q(z,p,n) \propto \delta(1-z)$
- Renormalization condition means dressing functions vanish when $p^2 = \mu^2$

PDFs of a Dressed Quark

Hadron independent vertex has form

$$
\Lambda_q(z, p, n) = i\psi \delta(1-z) + i\psi f_1^q(z, p^2)
$$

$$
+ n \cdot p \left[i\psi f_2^q(z, p^2) + f_3^q(z, p^2) \right]
$$

- the functions $f_i^q(z, p^2)$ can be interpreted as unpolarized PDFs in a dressed quark of virtuality p^2
- These functions are universal appear in all RL-DSE unpolarzied PDF calculations
- Distributed support in z is immediate indication gluons carry significant momentum
	- heavier s quark support nearer $z = 1$
	- WIA $\implies \Lambda_q(z,p,n) \propto \delta(1-z)$
- Renormalization condition means dressing functions vanish when $p^2 = \mu^2$

Self-Consistent DSE Results

- first time gluons self-consistently
	- correct RL-DSE pion PDFs in excellent agreement with Conway *et al.* data and recent JAM analysis
	- agrees with $x \to 1$ pQCD prediction
- Treating non-perturbative gluon contributions correctly pushes support of $q_\pi(x)$ to larger x
	- gluons remove strength from $q_\pi(x)$ at low to intermediate $x -$ baryon number then demands increased support at large x
	- cannot be replicated by DGLAP DSE splitting functions are dressed
- *Immediate consequence of gluon dressing is that gluons carry 35% of pion's and 30% of kaon's momentum*

Pion & Kaon LF Wave Functions

Light-Front Wave Functions

- In equal-time quantization a hadron wave function is a frame-dependent concept
	- boost operators are dynamical, that is, they
observer are interaction dependent
- In high energy scattering experiments particles move at near speed of light
	- natural to quantize a theory at equal light-front time: $\tau = (t+z)/\sqrt{2}$

- \bigcirc Light-front quantization \Longrightarrow light-front wave functions, which have some interesting properties
	- frame dependence is trivial, and yield a probability interpretation
	- boosts are kinematical *not dynamical*
- BSE wave function \implies light-front wave functions (LFWFs) $[\psi(x, k_T)]$
 \implies parton distribution amplitudes (PDAs) $[\varphi(x)]$ \implies parton distribution amplitudes (PDAs)

$$
\psi(x, \mathbf{k}_T) = \int dk^- \chi_{BSE}(p, k), \qquad \varphi(x) = \int d^2 \mathbf{k}_T \ \psi(x, \mathbf{k}_T)
$$

Light-Front Wave Functions

- In equal-time quantization a hadron wave function is a frame-dependent concept
	- boost operators are dynamical, that is, they are interaction dependent
- In high energy scattering experiments particles move at near speed of light
	- natural to quantize a theory at equal light-front time: $\tau = (t+z)/\sqrt{2}$

- \bullet Light-front quantization \Longrightarrow light-front wave functions, which have some interesting properties
	- frame dependence is trivial, and yield a probability interpretation \bullet
	- boosts are kinematical *not dynamical*
- BSE wave function \implies light-front wave functions (LFWFs) $[\psi(x, k_T)]$
 \implies parton distribution amplitudes (PDAs) $[\varphi(x)]$ \implies parton distribution amplitudes (PDAs)

$$
\psi(x, \mathbf{k}_T) = \int dk^- \chi_{BSE}(p, k), \qquad \varphi(x) = \int d^2 \mathbf{k}_T \ \psi(x, \mathbf{k}_T)
$$

On light-front hadron states can be represented by a Fock-state expansion

$$
|\pi^{+}\rangle = |u\bar{d}\rangle + |u\bar{d}g\rangle + |u\bar{d}gg\rangle + \ldots + |u\bar{d}q\bar{q}\rangle + |u\bar{d}q\bar{q}g\rangle + \ldots
$$

- Associated with each Fock-state is a number of LFWFs
	- diagonalizing the light-cone QCD Hamiltonian operator \implies LFWFs
	- *methods include*: discretized lightcone quantization, basis light-front quantization, and holographic QCD

LFWFs can be projected from solutions to the Bethe-Salpeter equation

BSE self-consistently sums an infinite number of Fock states

in rainbow-ladder, e.g, $|\pi^+\rangle = |u\bar{d}\rangle + |u\bar{d}g\rangle + |u\bar{d}gg\rangle + \dots$

- in the DSEs emergent pheonmena, such as confinement and DCSB, arise through the infinite sum of diagrams
- these effects are encoded in DSE dressed propagators and BS amplitudes, and therefore the projected LFWFs

On light-front hadron states can be represented by a Fock-state expansion

$$
|\pi^{+}\rangle = |u\bar{d}\rangle + |u\bar{d}g\rangle + |u\bar{d}gg\rangle + \ldots + |u\bar{d}q\bar{q}\rangle + |u\bar{d}q\bar{q}g\rangle + \ldots
$$

- Associated with each Fock-state is a number of LFWFs
	- diagonalizing the light-cone QCD Hamiltonian operator \implies LFWFs
	- *methods include*: discretized lightcone quantization, basis light-front quantization, and holographic QCD

LFWFs can be projected from solutions to the Bethe-Salpeter equation

$$
\boxed{r} = \frac{1}{\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}} + \frac{1}{\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}} + \frac{1}{\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}} + \dots
$$

BSE self-consistently sums an infinite number of Fock states

in rainbow-ladder, e.g, $|\pi^+\rangle = |u\bar{d}\rangle + |u\bar{d}g\rangle + |u\bar{d}gg\rangle + \dots$

- in the DSEs emergent pheonmena, such as confinement and DCSB, arise through the infinite sum of diagrams
- these effects are encoded in DSE dressed propagators and BS amplitudes, and therefore the projected LFWFs

On light-front hadron states can be represented by a Fock-state expansion

$$
|\pi^{+}\rangle = |u\bar{d}\rangle + |u\bar{d}g\rangle + |u\bar{d}gg\rangle + \ldots + |u\bar{d}q\bar{q}\rangle + |u\bar{d}q\bar{q}g\rangle + \ldots
$$

- Associated with each Fock-state is a number of LFWFs
	- diagonalizing the light-cone QCD Hamiltonian operator \implies LFWFs
	- *methods include*: discretized lightcone quantization, basis light-front quantization, and holographic QCD

LFWFs can be projected from solutions to the Bethe-Salpeter equation $\left(\frac{1}{T} \right)^{2} = \frac{1}{\frac{1}{2}} + \frac{1}{\frac{1}{2}} + \frac{1}{\frac{1}{2}} + \frac{1}{\frac{1}{2}} + \frac{1}{\frac{1}{2}}$

BSE self-consistently sums an infinite number of Fock states

in rainbow-ladder, e.g, $|\pi^+\rangle = |u\bar{d}\rangle + |u\bar{d}g\rangle + |u\bar{d}gg\rangle + \dots$

- in the DSEs emergent pheonmena, such as confinement and DCSB, arise through the infinite sum of diagrams
- these effects are encoded in DSE dressed propagators and BS amplitudes, and therefore the projected LFWFs

On light-front hadron states can be represented by a Fock-state expansion

$$
|\pi^{+}\rangle = |u\bar{d}\rangle + |u\bar{d}g\rangle + |u\bar{d}gg\rangle + \ldots + |u\bar{d}q\bar{q}\rangle + |u\bar{d}q\bar{q}g\rangle + \ldots
$$

- Associated with each Fock-state is a number of LFWFs
	- diagonalizing the light-cone QCD Hamiltonian operator \implies LFWFs
	- *methods include*: discretized lightcone quantization, basis light-front quantization, and holographic QCD

 T = K + T K

LFWFs can be projected from solutions to the Bethe-Salpeter equation

BSE self-consistently sums an infinite number of Fock states

in rainbow-ladder, e.g, $|\pi^+\rangle = |u\bar{d}\rangle + |u\bar{d}g\rangle + |u\bar{d}gg\rangle + \dots$

- in the DSEs emergent pheonmena, such as confinement and DCSB, arise through the infinite sum of diagrams
- these effects are encoded in DSE dressed propagators and BS amplitudes, and therefore the projected LFWFs

Pion and Kaon LFWFs

[Chao Shi and ICC, Phys. Rev. Lett. 122, no. 8, 082301 (2019)]

Pion has two leading Fock-state LFWFs: $\psi_{\uparrow\downarrow}(x,\mathbf{k}_T^2)$ & $\psi_{\uparrow\uparrow}(x,\mathbf{k}_T^2)$

 $\psi_0(x, \mathbf{k}_T^2) = \sqrt{3} i \int \frac{dk + dk}{2\pi} \text{Tr}_D[\gamma^+ \gamma_5 \chi(k, p)] \delta(k^+ - x p^+); \qquad \psi_1(x, \mathbf{k}_T^2) = ...$

- DSE result finds broad (almost) concave functions at hadronic scales, with features at small k_T^2 driven by DCSB
	- large $\psi_{\uparrow\uparrow}(x,\bm{k}_T^2)$ indicates significant orbital angular momentum and relativistic effects in pion and kaon
	- at large k_T^2 find same power-law behavior as predicted by perturbative QCD

Pion and Kaon LFWFs

[Chao Shi and ICC, Phys. Rev. Lett. 122, no. 8, 082301 (2019)]

Pion has two leading Fock-state LFWFs: $\psi_{\uparrow\downarrow}(x,\mathbf{k}_T^2)$ & $\psi_{\uparrow\uparrow}(x,\mathbf{k}_T^2)$

 $\psi_0(x, \mathbf{k}_T^2) = \sqrt{3} i \int \frac{dk + dk}{2\pi} \text{Tr}_D[\gamma^+ \gamma_5 \chi(k, p)] \delta(k^+ - x p^+); \qquad \psi_1(x, \mathbf{k}_T^2) = ...$

- DSE result finds broad (almost) concave functions at hadronic scales, with features at small k_T^2 driven by DCSB
	- large $\psi_{\uparrow\uparrow}(x,\bm{k}_T^2)$ indicates significant orbital angular momentum and relativistic effects in pion and kaon
	- at large k_T^2 find same power-law behavior as predicted by perturbative QCD

Pion's T-even TMD

[Chao Shi and ICC, Phys. Rev. Lett. 122, no. 8, 082301 (2019)]

Using pion's LFWFs straightforward to make predictions for pion TMDs

$$
f(x, \mathbf{k}_T^2) \propto |\psi_{\uparrow\downarrow}(x, \mathbf{k}_T^2)|^2 + \mathbf{k}_T^2 |\psi_{\uparrow\uparrow}(x, \mathbf{k}_T^2)|^2
$$

- numerous features inherited from LFWFs: TMDs are broad functions as a result of DCSB and peak at zero relative momentum $(x = 1/2)$
- evolution from model scale ($\mu = 0.52$ GeV) to $\mu = 6$ GeV results in significant broadening in $\left\langle k_{T}^{2}\right\rangle$, from $0.16\,\rm{GeV}^{2}$ to $0.69\,\rm{GeV}^{2}$
- Need careful treatment of gauge link to study pion Boer-Mulders function

Kaon's T-even TMD

Using pion's LFWFs straightforward to make predictions for pion TMDs

$$
f(x, \mathbf{k}_T^2) \propto |\psi_{\uparrow\downarrow}(x, \mathbf{k}_T^2)|^2 + \mathbf{k}_T^2 |\psi_{\uparrow\uparrow}(x, \mathbf{k}_T^2)|^2
$$

- numerous features inherited from LFWFs
- TMDs are broad functions as a result of DCSB and with significant flavor breaking effects
- TMDs satisfy: $f_K^s(x, \mathbf{k}_T^2) = f_K^u(1-x, \mathbf{k}_T^2);$ $f(x, \mathbf{k}_T^2) \to x^2(1-x)^2/\mathbf{k}_T^4$
- In general both pion and kaon LFWFs do not factorize in x and k_T^2

Probing Transverse Momentum

Measuring the pion/kaon TMDs will be a challenge, however progress can be made now by studing the $q \to \pi/K$ TMD fragmentation functions

Fragmentation functions are particularly important and interesting

potentially fragmentation functions can shed the most light on confinement and DCSB – because they describe how a fast moving (massless) quark or gluon becomes a tower of hadrons

Also interesting tool with which to probe color entanglement at an EIC • over what length scales can colored correlations be observed?

Probing Transverse Momentum

Measuring the pion/kaon TMDs will be a challenge, however progress can be made now by studing the $q \to \pi/K$ TMD fragmentation functions

Fragmentation functions are particularly important and interesting

potentially fragmentation functions can shed the most light on confinement and DCSB – because they describe how a fast moving (massless) quark or gluon becomes a tower of hadrons

Also interesting tool with which to probe color entanglement at an EIC • over what length scales can colored correlations be observed?

Pion and Kaon GPDs

[Chao Shi and ICC, forthcoming publication]

Straightforward to make predictions for pion and kaon GPDs from overlaps of LFWFs – only one type of GPD at leading twist

$$
H_{\pi}(x,0,t) = \int d\mathbf{k}_{T} \left[\psi_{0}(x,\hat{\mathbf{k}}_{T}) \psi_{0}(x,\mathbf{k}_{T}) + (\hat{k}_{1} + i\hat{k}_{2})(k_{1} - ik_{2}) \psi_{1}(x,\hat{\mathbf{k}}_{T}) \psi_{1}(x,\mathbf{k}_{T}) \right]
$$

- access to DGLAP region $[x > \xi]$ only with leading Fock state
- impossible to self-consistently respect polynomiality with truncated Fock space
- Our Fock-state expansion is in terms of dressed quarks and gluons

 \bullet as momentum transfer t increases dressing of quarks and gluons stripped away

Pion and Kaon GPDs

[Chao Shi and ICC, forthcoming publication]

Straightforward to make predictions for pion and kaon GPDs from overlaps of LFWFs – only one type of GPD at leading twist

$$
H_{\pi}(x,0,t) = \int d\mathbf{k}_{T} \left[\psi_{0}(x,\hat{\mathbf{k}}_{T}) \psi_{0}(x,\mathbf{k}_{T}) + (\hat{k}_{1} + i\hat{k}_{2})(k_{1} - ik_{2}) \psi_{1}(x,\hat{\mathbf{k}}_{T}) \psi_{1}(x,\mathbf{k}_{T}) \right]
$$

- access to DGLAP region $[x > \xi]$ only with leading Fock state
- impossible to self-consistently respect polynomiality with truncated Fock space
- Our Fock-state expansion is in terms of dressed quarks and gluons

as momentum transfer t increases dressing of quarks and gluons stripped away

DSEs + Higher Fock States

- From existing DSE ingredients can project out higher Fock states
- For example, the $|q\bar{q}q\rangle$ Fock state is given by

$$
\psi_{\lambda_1 \lambda_2 \lambda_3}(x_1, x_2, {\pmb k}_{1T}, {\pmb k}_{2T}) \sim \int \frac{d k_1^- \, d k_2^-}{(2 \pi)^2} \; \; \bar{u}(x_1 P^+, {\pmb k}_{1T}, \lambda_1) \gamma^+ \chi^\mu(k_1, k_2; P) \gamma^+ v(x_2 P^+, {\pmb k}_{2T}, \lambda_2) \; \varepsilon^*_\mu(\lambda_3)
$$

• for a pion there are nine 5-dimensional LFWFs associated with $|q\bar{q}q\rangle$ Fock state

Key question: *When is a leading Fock-state approximation reliable?*

- leading Fock state dominates at (very) large x and (very) large Q^2
- \bullet can generate numerous higher Fock states using, e.g., DGLAP evolution however non-perturbative content is missing
- Increasing difficult to calculate these higher Fock-state LFWFs and their impact on observables – *need to use full BSE solutions*

Nucleon PDFs

Spin-Independent PDFs

Solve Poincaré covariant Faddeev eqn for nucleon bound state:

- key approximation is that the nucleon consists of quark + dynamical diquark
- approximation is known to work extremely \bullet well, e.g., masses, form factors, etc
- QCD predicts $q(x) \sim (1-x)^3$ as $x \to 1$; our result is $q(x) \sim (1-x)^5$
	- quark-diquark approximation breaks down at (very) large x
- Find d/u in good agreement with CJ15 • ratio is very sensitive to diquark correlations *At what* x *does* q + qq *break down?*

Conclusions

- For pion and kaon PDFs included for first time gluons self-consistently
	- correct RL-DSE pion PDFs in excellent argeement with Conway *et al.* data and recent JAM analysis
	- agrees with $x \to 1$ pQCD prediction
- Using DSE solutions to the BSE we determined the leading Fock-state LFWFs for the pion and kaon
	- using these LFWFs straightforward to determine FFs, PDFs, TMDs, GPDs, etc
	- key advantage of DSE method is BSE sums an infinite number of Fock states =⇒ LFWFs encapsulate effects from emergent phenomena: confinement & DCSB
- Much work remains in experiment and theory to understand the pion and kaon

[HiX2019](#page-0-0) 26 / 26