Hadron PDFs in the valence region A DSE viewpoint

Ian Cloët Argonne National Laboratory

5th International Workshop on Nucleon Structure at Large Bjorken-*x* (HiX 2019)

16-21 August 2019, Orthodox Academy of Crete, Crete

Office of Science

Pion PDF Puzzle – Much Ado About Nothing

• Longstanding perturbative QCD prediction that pion PDF near x = 1 behaves as

$$q_{\pi}(x) \simeq (1-x)^{2+\gamma_q(\mu^2)}$$

Since large-x quarks are the source of large-x gluons, near x = 1 expect

 $g_{\pi}(x) \simeq (1-x)^{3+\gamma_g(\mu^2)}$

- However, pion-induced DY data, and a recent re-analysis that also included leading-neutron data, seem to prefer $q(x) \sim (1-x)^1$ near x = 1
- Potential resolution to this "puzzle" $0 \frac{1}{0} \frac{1}{0} \frac{1}{0} \frac{1}{0} \frac{1}{0} \frac{1}{0}$ provided by Aicher *et al.* \implies soft-gluon resummation

• However, pQCD predictions need only set in very near x = 1, the observed $q(x) \simeq (1-x)^1$ behavior could be real where data exists

Pion PDF Puzzle – Much Ado About Nothing

• Longstanding perturbative QCD prediction that pion PDF near x = 1 behaves as

$$q_{\pi}(x) \simeq (1-x)^{2+\gamma_q(\mu^2)}$$

Since large-x quarks are the source of large-x gluons, near x = 1 expect

 $g_{\pi}(x) \simeq (1-x)^{3+\gamma_g(\mu^2)}$

- However, pion-induced DY data, and a recent re-analysis that also included leading-neutron data, seem to prefer $q(x) \sim (1-x)^1$ near x = 1
- Potential resolution to this "puzzle" 0.001 0.001 0.001 0.001 0.001

However, pQCD predictions need only set in very near x = 1, the observed $q(x) \simeq (1-x)^1$ behavior could be real where data exists

DSEs + Pion PDFs

- DSE prediction [Hecht (2001); etc] that $q_{\pi}(x) \simeq (1-x)^2$ as $x \to 1$
 - related to $1/k^2$ dependence of BSE kernel at large relative momentum
- Previous DSE PDF calculations have used Ward-identity ansatz (WIA)

$$\Lambda_q(z, p, n) \to \Lambda_q^{\text{WIA}}(z, p, n) = \delta (1 - z) \ n^{\mu} \frac{\partial}{\partial p^{\mu}} S_q^{-1}(p)$$

- WIA respects baryon sum rule but not higher moments e.g. momentum sum rule
- momentum is not distributed correctly between quarks and gluons

Inconsistencies in Aicher & DSE results

Pion / Kaon + High-priority science questions

- The NAS Assessment of a U.S. based Electron-Ion Collider identified three high-priority science questions
 - How does the mass of the nucleon arise?
 - How does the spin of the nucleon arise?
 - What are the emergent properties of dense systems of gluons?
- The pion and kaon can be understood as a bound state of a dressed-quark and a dressed-antiquark in QFT, but are also Goldstone modes associated with DCSB in QCD
- The dynamical breaking of chiral symmetry (DCSB) in QCD gives rise to ~ 500 MeV mass splittings in hadron spectrum & massless Goldstone bosons in chiral limit (π, K, η)

Hadron Masses in QCD

Quark/gluon contributions to masses (& angular momentum) are accessed via matrix elements of QCD's (symmetric) energy-momentum tensor

$$T^{\mu\nu} = T^{\nu\mu}, \qquad \partial_{\mu} T^{\mu\nu} = \partial_{\mu} T^{\mu\nu}_{q} + \partial_{\mu} T^{\mu\nu}_{g} = 0, \qquad T^{\mu\nu} = \frac{\overline{T}^{\mu\nu}}{[\text{trace]ess}]} + \frac{\widehat{T}^{\mu\nu}}{[\text{trace]}}$$

The trace piece of $T^{\mu\nu}$ takes the form (un-renormalized)

At zero momentum transfer

$$\langle p | T^{\mu\nu} | p \rangle = 2 p^{\mu} p^{\nu} \implies \langle p | T^{\mu}_{\mu} | p \rangle = 2 m^2$$

• in chiral limit entire hadron mass from gluons!

• e.g., Dmitri Kharzeev – Proton Mass workshops at Temple University and ECT*

Understanding difference in pion/kaon and proton is key to hadron masses:

$$\left\langle \pi \left| T^{\mu}_{\mu} \right| \pi \right\rangle = 2 \, m_{\pi}^2 \stackrel{\text{chiral limit}}{\to} 0, \qquad \qquad \left\langle N \left| T^{\mu}_{\mu} \right| N \right\rangle = 2 \, m_N^2$$

Rest Frame Hadron Mass Decompositions

Xiangdong Ji proposed hadron mass decomposition [PRL 74, 1071 (1995); PRD 52, 271 (1995)]

$$m_{p} = \frac{\left\langle p \left| \int d^{3}x \, T^{00}(0, \vec{x}) \right| p \right\rangle}{\left\langle p \right| p \right\rangle} \bigg|_{\text{at rest}} = \underbrace{M_{q} + M_{g}}_{\text{quark and gluon energies}} + \underbrace{M_{m}}_{\text{quark mass}} + \underbrace{M_{a}}_{\text{trace anomaly}}$$
$$M_{q} = \frac{3}{4} \left(a - b \right) m_{p}, \quad M_{g} = \frac{3}{4} \left(1 - a \right) m_{p}, \quad M_{m} = b \, m_{p}, \quad M_{a} = \frac{1}{4} \left(1 - b \right) m_{p},$$
$$a = \text{quark momentum fraction}, \quad b \text{ related to sigma-term or anomaly contribution}$$

• [See Cédric Lorcé, EPJC 78, (2018) for decomposition with pressure effects]

In chiral limit $(m_q \to 0)$ pion has no rest frame $(m_\pi = 0)$ – how to interpret Ji's pion mass decomposition? Limit as $m_q \to 0$ is likely well behaved.

What we know about the Pion and Kaon

Pion and kaon structure is slowly being revealed using: π^-/K^- beams at CERN; Sullivan type experiments at Jefferson Lab; π^- beam at Fermilab; and $e^+e^- \rightarrow \pi^+\pi^-$, K^+K^- in the time-like region

40 years of experiments has revealed, e.g.

• $r_{\pi^+} = 0.672 \pm 0.008$, $r_{K^+} = 0.560 \pm 0.031$, $r_{K^0} = -0.277 \pm 0.018$

Still a lot more to learn about pion and kaon structure:

• quark and gluon PDFs; TMDs including Boer-Mulders function; $q, g \rightarrow \pi/K$ fragmentation functions, quark and gluon GPDs; gravitational form factors

What we know about the Pion and Kaon

• Pion and kaon structure is slowly being revealed using: π^-/K^- beams at CERN; Sullivan type experiments at Jefferson Lab; π^- beam at Fermilab; and $e^+e^- \rightarrow \pi^+\pi^-$, K^+K^- in the time-like region

40 years of experiments has revealed, e.g.

• $r_{\pi^+} = 0.672 \pm 0.008$, $r_{K^+} = 0.560 \pm 0.031$, $r_{K^0} = -0.277 \pm 0.018$

Still a lot more to learn about pion and kaon structure:

• quark and gluon PDFs; TMDs including Boer-Mulders function; $q, g \rightarrow \pi/K$ fragmentation functions, quark and gluon GPDs; gravitational form factors

Pion & Kaon Structure at JLab and an EIC

- At Jefferson Lab and an EIC pion and kaon structure can be accessed via the so-called *Sullivan* processes
 - initial pion/kaon is off mass-shell need extrapolation to pole
 - existing results for form factors what about quark and gluon PDFs, TMDs, GPDs, *etc*, at an EIC?
- Explored this ideal at a series of workshops on "Pion and Kaon Structure at an Electron-Ion Collider" (PIEIC)
 - 1–2 June 2017, Argonne National Laboratory www.phy.anl.gov/theory/pieic2017/
 - 24-25 May 2018, The Catholic University of America www.jlab.org/conferences/pieic18/
- Drell-Yan also very nice way to measure pion/kaon structure

QCD's Dyson-Schwinger Equations

- The equations of motion of QCD \iff QCD's Dyson–Schwinger equations
 - an infinite tower of coupled integral equations
 - tractability \implies must implement a symmetry preserving truncation
- The most important DSE is QCD's gap equation \implies quark propagator

$$\rightarrow$$
 -1 = -1 + \rightarrow

• ingredients - dressed gluon propagator & dressed quark-gluon vertex

$$S(p) = \frac{Z(p^2)}{i \not p + M(p^2)}$$

- Mass function, M(p²), exhibits dynamical mass generation, even in chiral limit
 - mass function is gauge dependent and therefore NOT an observable!
- Hadron masses are generated by dynamical chiral symmetry breaking – caused by a cloud of gluons dressing the quarks and gluons

Calculating and Predicting Pion Structure

In QFT a two-body bound state (e.g., a pion, kaon, etc) is described by the Bethe-Salpeter equation (BSE):

- the kernel must yield a solution that encapsulates the consequences of DCSB, e.g., in chiral limit $m_{\pi} = 0 \& m_{\pi}^2 \propto m_u + m_d$
- Pion Bethe-Salpeter vertex

$$\Gamma_{\pi}(p,k) = \gamma_5 \Big[E_{\pi}(p,k) + \not p F_{\pi}(p,k) \\ + \not k k \cdot p G_{\pi}(p,k) + i \sigma^{\mu\nu} k_{\mu} p_{\nu} H_{\pi}(p,k) \Big]$$

- $\chi_{\text{BSE}} = S(k + \frac{1}{2}p) \Gamma_{\pi}(p,k) S(k \frac{1}{2}p)$
- large relative momentum: $E_{\pi} \sim F_{\pi} \sim 1/k^2$
- Challenging to go beyond rainbow-ladder trunction and maintain symmetries

 $\begin{array}{c} E_{\pi}(k^2,z=\hat{p}\cdot\hat{k}) \\ 800$

 $30^{\circ} - 1^{-0.5} 0.\overline{6}^{\circ} 0.4^{\circ} 0.2^{\circ} 0.4^{\circ} 0.6^{\circ} 0.8^{\circ}$

 k^{2} 20

Pion & Kaon PDFs

Pion PDFs – Self-Consistent DSE Calculations

To self-consistently determine hadron PDFs in rainbow-ladder must sum all planar diagrams

$$q(x) \propto \operatorname{Tr} \int \frac{d^4 p}{(2\pi)^4} \,\overline{\Gamma}_M(p,P) \, S(p)$$
$$\times \,\Gamma_q(x,p,n) \, S(p) \,\Gamma_M(p,P) \, S(p-P)$$

- **OSEs** are formulated in Euclidean space evaluate q(x) by taking moments
- The *hadron dependent* vertex $\Gamma_q(x, p, n)$ satisfies an inhomogeneous BSE
- Solution However can define a *hadron independent* vertex $\Lambda_q(x, p, n)$

$$\Gamma_q(x, p, n) = \iint dy \, dz \, \delta(x - yz) \, \delta\left(y - \frac{p \cdot n}{P \cdot n}\right) \Lambda_q(z, p, n)$$

• $\Lambda_q(x, p, n)$ satisfies the inhomogeneous BSE

$$\begin{split} \Lambda_q(z,p,n) &= i Z_2 \not n \, \delta(1-z) - \iint du \, dw \, \delta(z-uw) \int \frac{d^4\ell}{(2\pi)^4} \delta\!\left(w - \frac{\ell \cdot n}{p \cdot n}\right) \\ & \times \gamma_\mu \, \mathcal{K}_{\mu\nu}(p-\ell) \, S(\ell) \, \Lambda_q(u,\ell,n) \, S(\ell) \, \gamma_\nu \end{split}$$

PDFs of a Dressed Quark

Hadron independent vertex has form

$$\begin{split} \Lambda_q(z,p,n) &= i \not\!\!\!/ \, \delta(1-z) + i \not\!\!/ \, f_1^q(z,p^2) \\ &+ n \cdot p \left[i \not\!\!/ \, f_2^q(z,p^2) + f_3^q(z,p^2) \right] \end{split}$$

• the functions $f_i^q(z, p^2)$ can be interpreted as unpolarized PDFs in a dressed quark of virtuality p^2

- These functions are universal appear in all RL-DSE unpolarzied PDF calculations
- Distributed support in z is immediate indication gluons carry significant momentum
 - heavier s quark support nearer z = 1
 - WIA $\implies \Lambda_q(z, p, n) \propto \delta(1 z)$
- Renormalization condition means dressing functions vanish when $p^2 = \mu^2$

3.0

2.0

0.0 -1.0 -2.0

-3.0 -4.0

-5.0 -6.0

-7.0

-8.0

PDFs of a Dressed Quark

Hadron independent vertex has form

$$\begin{split} \Lambda_q(z,p,n) &= i \not\!\!\!/ \, \delta(1-z) + i \not\!\!/ \, f_1^q(z,p^2) \\ &+ n \cdot p \left[i \not\!\!/ \, f_2^q(z,p^2) + f_3^q(z,p^2) \right] \end{split}$$

- the functions $f_i^q(z, p^2)$ can be interpreted as unpolarized PDFs in a dressed quark of virtuality p^2
- These functions are universal appear in all RL-DSE unpolarzied PDF calculations
- Distributed support in z is immediate indication gluons carry significant momentum
 - heavier s quark support nearer z = 1
 - WIA $\implies \Lambda_q(z, p, n) \propto \delta(1-z)$
- Renormalization condition means dressing functions vanish when $p^2 = \mu^2$

Self-Consistent DSE Results

- For pion and kaon PDFs included for first time gluons self-consistently
 - correct RL-DSE pion PDFs in excellent agreement with Conway *et al.* data and recent JAM analysis
 - agrees with $x \to 1$ pQCD prediction
- Treating non-perturbative gluon contributions correctly pushes support of $q_{\pi}(x)$ to larger x
 - gluons remove strength from $q_{\pi}(x)$ at low to intermediate x – baryon number then demands increased support at large x
 - cannot be replicated by DGLAP DSE splitting functions are dressed
- Immediate consequence of gluon dressing is that gluons carry 35% of pion's and 30% of kaon's momentum

0.2

02

0'4

0.6

х

Δ

Pion & Kaon LF Wave Functions

Light-Front Wave Functions

- In equal-time quantization a hadron wave function is a frame-dependent concept
 - boost operators are dynamical, that is, they are interaction dependent
- In high energy scattering experiments particles move at near speed of light
 - natural to quantize a theory at equal light-front time: $\tau = (t+z)/\sqrt{2}$

- Light-front quantization ⇒ light-front wave functions, which have some interesting properties
 - frame dependence is trivial, and yield a probability interpretation
 - boosts are kinematical not dynamical
- BSE wave function \implies light-front wave functions (LFWFs) $[\psi(x, \mathbf{k}_T)]$ \implies parton distribution amplitudes (PDAs) $[\varphi(x)]$

$$\psi(x, \mathbf{k}_T) = \int dk^- \chi_{BSE}(p, k), \qquad \varphi(x) = \int d^2 \mathbf{k}_T \ \psi(x, \mathbf{k}_T)$$

Light-Front Wave Functions

- In equal-time quantization a hadron wave function is a frame-dependent concept
 - boost operators are dynamical, that is, they are interaction dependent
- In high energy scattering experiments particles move at near speed of light
 - natural to quantize a theory at equal light-front time: $\tau = (t+z)/\sqrt{2}$

- Light-front quantization => light-front wave functions, which have some interesting properties
 - frame dependence is trivial, and yield a probability interpretation
 - boosts are kinematical not dynamical
- BSE wave function \implies light-front wave functions (LFWFs) $[\psi(x, \mathbf{k}_T)]$ \implies parton distribution amplitudes (PDAs) $[\varphi(x)]$

$$\psi(x, \mathbf{k}_T) = \int dk^- \chi_{BSE}(p, k), \qquad \varphi(x) = \int d^2 \mathbf{k}_T \ \psi(x, \mathbf{k}_T)$$

On light-front hadron states can be represented by a Fock-state expansion

$$\pi^{+}\rangle = \left| u\bar{d} \right\rangle + \left| u\bar{d} g \right\rangle + \left| u\bar{d} g g \right\rangle + \ldots + \left| u\bar{d} q\bar{q} \right\rangle + \left| u\bar{d} q\bar{q} g \right\rangle + \ldots$$

- Associated with each Fock-state is a number of LFWFs
 - diagonalizing the light-cone QCD Hamiltonian operator ⇒ LFWFs
 - *methods include*: discretized lightcone quantization, basis light-front quantization, and holographic QCD

LFWFs can be projected from solutions to the Bethe-Salpeter equation

T = K + T K

• BSE self-consistently sums an infinite number of Fock states

• in rainbow-ladder, e.g, $|\pi^+\rangle = |u\bar{d}\rangle + |u\bar{d}g\rangle + |u\bar{d}gg\rangle + \dots$

Obtaining LFWFs from DSE solutions of the BSE has several key features

- in the DSEs emergent pheonmena, such as confinement and DCSB, arise through the infinite sum of diagrams
- these effects are encoded in DSE dressed propagators and BS amplitudes, and therefore the projected LFWFs

On light-front hadron states can be represented by a Fock-state expansion

$$\pi^{+}\rangle = \left| u\bar{d} \right\rangle + \left| u\bar{d} g \right\rangle + \left| u\bar{d} g g \right\rangle + \ldots + \left| u\bar{d} q\bar{q} \right\rangle + \left| u\bar{d} q\bar{q} g \right\rangle + \ldots$$

- Associated with each Fock-state is a number of LFWFs
 - diagonalizing the light-cone QCD Hamiltonian operator \Longrightarrow LFWFs
 - *methods include*: discretized lightcone quantization, basis light-front quantization, and holographic QCD

LFWFs can be projected from solutions to the Bethe-Salpeter equation

$$T = \frac{1}{200} + \frac{1}{2000} +$$

- BSE self-consistently sums an infinite number of Fock states
- in rainbow-ladder, e.g, $|\pi^+\rangle = |u\bar{d}\rangle + |u\bar{d}g\rangle + |u\bar{d}gg\rangle + \dots$

Obtaining LFWFs from DSE solutions of the BSE has several key features

- in the DSEs emergent pheonmena, such as confinement and DCSB, arise through the infinite sum of diagrams
- these effects are encoded in DSE dressed propagators and BS amplitudes, and therefore the projected LFWFs

On light-front hadron states can be represented by a Fock-state expansion

$$\pi^{+}\rangle = \left| u\bar{d} \right\rangle + \left| u\bar{d} g \right\rangle + \left| u\bar{d} g g \right\rangle + \ldots + \left| u\bar{d} q\bar{q} \right\rangle + \left| u\bar{d} q\bar{q} g \right\rangle + \ldots$$

- Associated with each Fock-state is a number of LFWFs
 - diagonalizing the light-cone QCD Hamiltonian operator \Longrightarrow LFWFs
 - *methods include*: discretized lightcone quantization, basis light-front quantization, and holographic QCD

• LFWFs can be projected from solutions to the Bethe-Salpeter equation $T = \frac{1}{100} + \frac{1}{100} \left[\frac{1}{100} + \frac{1}{100} +$

- BSE self-consistently sums an infinite number of Fock states
- in rainbow-ladder, e.g, $|\pi^+\rangle = |u\bar{d}\rangle + |u\bar{d}g\rangle + |u\bar{d}gg\rangle + \dots$
- Obtaining LFWFs from DSE solutions of the BSE has several key features
 - in the DSEs emergent pheonmena, such as confinement and DCSB, arise through the infinite sum of diagrams
 - these effects are encoded in DSE dressed propagators and BS amplitudes, and therefore the projected LFWFs

On light-front hadron states can be represented by a Fock-state expansion

$$\pi^{+}\rangle = \left| u\bar{d} \right\rangle + \left| u\bar{d} g \right\rangle + \left| u\bar{d} g g \right\rangle + \ldots + \left| u\bar{d} q\bar{q} \right\rangle + \left| u\bar{d} q\bar{q} g \right\rangle + \ldots$$

- Associated with each Fock-state is a number of LFWFs
 - diagonalizing the light-cone QCD Hamiltonian operator ⇒ LFWFs
 - *methods include*: discretized lightcone quantization, basis light-front quantization, and holographic QCD

LFWFs can be projected from solutions to the Bethe-Salpeter equation

BSE self-consistently sums an infinite number of Fock states

_

• in rainbow-ladder, e.g, $|\pi^+\rangle = |u\bar{d}\rangle + |u\bar{d}g\rangle + |u\bar{d}gg\rangle + \dots$

Obtaining LFWFs from DSE solutions of the BSE has several key features

K

- in the DSEs emergent pheonmena, such as confinement and DCSB, arise through the infinite sum of diagrams
- these effects are encoded in DSE dressed propagators and BS amplitudes, and therefore the projected LFWFs

Pion and Kaon LFWFs

[Chao Shi and ICC, Phys. Rev. Lett. 122, no. 8, 082301 (2019)]

Pion has two leading Fock-state LFWFs: $\psi_{\uparrow\downarrow}(x, \mathbf{k}_T^2) \& \psi_{\uparrow\uparrow}(x, \mathbf{k}_T^2)$

 $\psi_0(x, \mathbf{k}_T^2) = \sqrt{3} \, i \int \frac{dk^+ dk^-}{2 \, \pi} \, \mathrm{Tr}_D \Big[\gamma^+ \gamma_5 \, \chi(k, p) \Big] \delta \Big(k^+ - x \, p^+ \Big); \qquad \psi_1(x, \mathbf{k}_T^2) = \dots$

• DSE result finds broad (almost) concave functions at hadronic scales, with features at small k_T^2 driven by DCSB

- large $\psi_{\uparrow\uparrow}(x, k_T^2)$ indicates significant orbital angular momentum and relativistic effects in pion and kaon
- at large k_T^2 find same power-law behavior as predicted by perturbative QCD

Pion and Kaon LFWFs

[Chao Shi and ICC, Phys. Rev. Lett. 122, no. 8, 082301 (2019)]

Pion has two leading Fock-state LFWFs: $\psi_{\uparrow\downarrow}(x, \mathbf{k}_T^2) \& \psi_{\uparrow\uparrow}(x, \mathbf{k}_T^2)$

 $\psi_0(x, \mathbf{k}_T^2) = \sqrt{3} i \int \frac{dk^+ dk^-}{2\pi} \text{Tr}_D \Big[\gamma^+ \gamma_5 \, \chi(k, p) \Big] \delta \Big(k^+ - x \, p^+ \Big); \qquad \psi_1(x, \mathbf{k}_T^2) = \dots$

DSE result finds broad (almost) concave functions at hadronic scales, with features at small k_T^2 driven by DCSB

- large $\psi_{\uparrow\uparrow}(x, k_T^2)$ indicates significant orbital angular momentum and relativistic effects in pion and kaon
- at large k_T^2 find same power-law behavior as predicted by perturbative QCD

Pion's *T*-even **TMD**

[Chao Shi and ICC, Phys. Rev. Lett. 122, no. 8, 082301 (2019)]

Using pion's LFWFs straightforward to make predictions for pion TMDs

$$f(x, \boldsymbol{k}_T^2) \propto \left| \psi_{\uparrow\downarrow}(x, \boldsymbol{k}_T^2) \right|^2 + \boldsymbol{k}_T^2 \left| \psi_{\uparrow\uparrow}(x, \boldsymbol{k}_T^2) \right|^2$$

- numerous features inherited from LFWFs: TMDs are broad functions as a result of DCSB and peak at zero relative momentum (x = 1/2)
- evolution from model scale ($\mu = 0.52 \text{ GeV}$) to $\mu = 6 \text{ GeV}$ results in significant broadening in $\langle \boldsymbol{k}_T^2 \rangle$, from 0.16 GeV² to 0.69 GeV²
- Need careful treatment of gauge link to study pion Boer-Mulders function

Kaon's T-even TMD

Using pion's LFWFs straightforward to make predictions for pion TMDs

$$f(x, \boldsymbol{k}_T^2) \propto \left| \psi_{\uparrow\downarrow}(x, \boldsymbol{k}_T^2) \right|^2 + \boldsymbol{k}_T^2 \left| \psi_{\uparrow\uparrow}(x, \boldsymbol{k}_T^2) \right|^2$$

- numerous features inherited from LFWFs
- TMDs are broad functions as a result of DCSB and with significant flavor breaking effects
- **TMDs satisfy:** $f_K^s(x, k_T^2) = f_K^u(1 x, k_T^2); \quad f(x, k_T^2) \to x^2(1 x)^2/k_T^4$
- In general both pion and kaon LFWFs do not factorize in x and k_T^2

Probing Transverse Momentum

• Measuring the pion/kaon TMDs will be a challenge, however progress can be made now by studing the $q \rightarrow \pi/K$ TMD fragmentation functions

Fragmentation functions are particularly important and interesting

• potentially fragmentation functions can shed the most light on confinement and DCSB – because they describe how a fast moving (massless) quark or gluon becomes a tower of hadrons

Also interesting tool with which to probe color entanglement at an EIC
over what length scales can colored correlations be observed?

Probing Transverse Momentum

• Measuring the pion/kaon TMDs will be a challenge, however progress can be made now by studing the $q \rightarrow \pi/K$ TMD fragmentation functions

Fragmentation functions are particularly important and interesting

• potentially fragmentation functions can shed the most light on confinement and DCSB – because they describe how a fast moving (massless) quark or gluon becomes a tower of hadrons

Also interesting tool with which to probe color entanglement at an EIC
over what length scales can colored correlations be observed?

Pion and Kaon GPDs

[Chao Shi and ICC, forthcoming publication]

Straightforward to make predictions for pion and kaon GPDs from overlaps of LFWFs – only one type of GPD at leading twist

$$H_{\pi}(x,0,t) = \int d\mathbf{k}_{T} \left[\psi_{0}(x,\hat{\mathbf{k}}_{T})\psi_{0}(x,\mathbf{k}_{T}) + (\hat{k}_{1}+i\hat{k}_{2})(k_{1}-ik_{2})\psi_{1}(x,\hat{\mathbf{k}}_{T})\psi_{1}(x,\mathbf{k}_{T}) \right]$$

- access to DGLAP region $[x > \xi]$ only with leading Fock state
- impossible to self-consistently respect polynomiality with truncated Fock space

Our Fock-state expansion is in terms of dressed quarks and gluons

• as momentum transfer t increases dressing of quarks and gluons stripped away

Pion and Kaon GPDs

[Chao Shi and ICC, forthcoming publication]

Straightforward to make predictions for pion and kaon GPDs from overlaps of LFWFs – only one type of GPD at leading twist

$$H_{\pi}(x,0,t) = \int d\mathbf{k}_{T} \left[\psi_{0}(x,\hat{\mathbf{k}}_{T})\psi_{0}(x,\mathbf{k}_{T}) + (\hat{k}_{1}+i\hat{k}_{2})(k_{1}-ik_{2})\psi_{1}(x,\hat{\mathbf{k}}_{T})\psi_{1}(x,\mathbf{k}_{T}) \right]$$

- access to DGLAP region $[x > \xi]$ only with leading Fock state
- impossible to self-consistently respect polynomiality with truncated Fock space

Our Fock-state expansion is in terms of dressed quarks and gluons

• as momentum transfer t increases dressing of quarks and gluons stripped away

DSEs + Higher Fock States

- From existing DSE ingredients can project out higher Fock states
- For example, the $|q\bar{q}g\rangle$ Fock state is given by

 $\psi_{\lambda_1\lambda_2\lambda_3}(x_1,x_2,\boldsymbol{k}_{1T},\boldsymbol{k}_{2T}) \sim \int \frac{dk_1^- dk_2^-}{(2\pi)^2} \bar{u}(x_1P^+,\boldsymbol{k}_{1T},\lambda_1)\gamma^+\chi^\mu(k_1,k_2;P)\gamma^+v(x_2P^+,\boldsymbol{k}_{2T},\lambda_2) \varepsilon^*_\mu(\lambda_3)$

• for a pion there are nine 5-dimensional LFWFs associated with $|q\bar{q}\,g
angle$ Fock state

Key question: When is a leading Fock-state approximation reliable?

- leading Fock state dominates at (very) large x and (very) large Q^2
- can generate numerous higher Fock states using, e.g., DGLAP evolution however non-perturbative content is missing
- Increasing difficult to calculate these higher Fock-state LFWFs and their impact on observables *need to use full BSE solutions*

Nucleon PDFs

Spin-Independent PDFs

Solve Poincaré covariant Faddeev eqn for nucleon bound state:

- key approximation is that the nucleon consists of quark + dynamical diquark
- approximation is known to work extremely well, e.g., masses, form factors, etc
- QCD predicts $q(x) \sim (1-x)^3$ as $x \to 1$; our result is $q(x) \sim (1-x)^5$
 - quark-diquark approximation breaks down at (very) large *x*
- Find d/u in good agreement with CJ15 0.05
 ratio is very sensitive to diquark correlations
 At what x does q + qq break down?

0.6

0.7

0.8

r

HiX2019 25 / 26

0.9

Δ

Conclusions

- For pion and kaon PDFs included for first time gluons self-consistently
 - correct RL-DSE pion PDFs in excellent argeement with Conway *et al.* data and recent JAM analysis
 - agrees with $x \to 1$ pQCD prediction
- Using DSE solutions to the BSE we determined the leading Fock-state LFWFs for the pion and kaon
 - using these LFWFs straightforward to determine FFs, PDFs, TMDs, GPDs, etc
 - key advantage of DSE method is BSE sums an infinite number of Fock states ⇒ LFWFs encapsulate effects from emergent phenomena: confinement & DCSB
- Much work remains in experiment and theory to understand the pion and kaon

HiX2019

26/26