Closing Talk

Australian Government

Australian Research Council

Anthony W. Thomas

HiX Kolympari : 17th August 2019

New Facilities & Apparatus

Consensus Study Report on the US based Electron Ion Collider

Summary:

The science questions that an EIC will answer are central to completing an understanding of atoms as well as being integral to the agenda of nuclear physics today. In addition, the development of an EIC would advance accelerator science and technology in nuclear science; it would as well benefit other fields of accelerator based science and society, from medicine through materials science to elementary particle physics

Luminosity EIC at BNL (& JLab)

IR Designs can be adjusted to obtain peak luminosity at different center of mass energies. The curves below show luminosity vs E_{cm} with IRs optimized for high or low center of mass energy. *With two IRs, in principle both optimization can coexist in the same machine*

EIC @ JLab & Energy Upgrade

EIC @ BNL High energy optimization

EIC @ BNL Low energy optimization (Motivated by interest of EICUG intermediate to high-x)

- Increased crossing angle to 50mrad
- Electron quads brought in closer: small β*
- Increase number bunches

For e-A collisions, the E_{cm} scale needs to be reduced by a factor (Z/A)^{1/2}

MESA at Mainz

New facility MESA

Mainz Energy-Recovering Superconducting Accelerator

From talk of V. Pascalutsa

Proton radius puzzle

Low-Q² proton FF: MAGIX@MESA

Operation of a high-intensity (polarized) ERL beam in conjunction with light internal target a novel technique in nuclear and particle physics

High resolution spectrometers MAGIX:

- double arm, compact design
- momentum resolution: Δp/p < 10⁻⁴
- acceptance: ±50 mrad
- GEM-based focal plane detectors
- Gas Jet or polarized T-shaped target

SoLID with 11 GeV at JLab

SoLID Detector

Nucleon Structure Study JLab 12 GeV Program SoLID: Large Acceptance and High Luminosity

Powerful high acceptance device to handle luminosity up to 10³⁹

Elastic Scattering: s-quark Form Factors

- Sensitive Flavor separation at 3 Q² values
- No more than few % of EM structure
- Modern lattice QCD results in agreement

Neutron-proton radius difference

Cloet, Bentz, Thomas, arXiv 0901.3559

48Ca PVDIS

Consider PVDIS on a heavy nucleus

- Neutron or proton excess in nuclei leads to a isovector-vector mean field (ρ exchange) shifts quark distributions: "apparent" charge symmetry violation Isovector EMC effect: could be responsible for at least 2/3 of NuTeV anomaly
- new insight into medium modification of quark distributions

$$a_2 \simeq \frac{9}{5} - 4\sin^2\theta_W - \frac{12}{25}\frac{u_A^+ - d_A^+}{u_A^+ + d_A^+} + \dots$$

Great leverage for insight into isospin dependence of the EMC effect in an inclusive measurement

- methods of flavor decomposition of medium modifications challenging
 must disentangle small effects
- (theoretically and experimentally) • Precise isotope cross-section ratios in purely electromagnetic electron scattering: MUCH reduced sensitivity to the isovector combination

Parity-Violating Deep Inelastic Scattering and the Flavor Dependence of the EMC Effect

I.C. Cloët,¹ W. Bentz,² and A.W. Thomas¹

Ideally tested at EIC with CC reactions

ADELAIDE UNIVERSITY AUSTRALIA

Parity violating EMC will test this at JLab 12 GeV - interesting to incorporate in nuclear PDF fits: Schienbein?

QCD Dynamics with Precision LD₂ PVDIS

 $u^p(x) \stackrel{?}{=} d^n(x) \quad \Rightarrow \quad \delta u(x) \equiv u^p(x) - d^n(x)$ $d^p(x) \stackrel{?}{=} u^n(x) \quad \Rightarrow \quad \delta d(x) \equiv d^p(x) - u^n(x)$

We already know some CSV effects: •u-d mass difference $\delta m = m_d - m_u \approx 4 \text{ MeV}$ $\delta M = M_n - M_p \approx 1.3 \text{ MeV}$

electromagnetic effects

- Direct sensitivity to parton-level CSV
- Important implications for PDF's
- Could be partial explanation of the NuTeV anomaly

$$R_{CSV} = \frac{\delta A_{PV}}{A_{PV}} \approx 0.28 \frac{\delta u(x) - \delta d(x)}{u(x) + d(x)}$$

 $\langle VV \rangle - \langle SS \rangle = \langle (V-S)(V+S) \rangle \propto l_{\mu\nu} \int \langle D | \overline{u}(x)\gamma^{\mu}u(x)\overline{d}(0)\gamma^{\nu}d(0) \rangle e^{iqx} d^4x$ Zero in quark-parton model (a) (b) Higher-Twist valence quark-quark correlation (c) type diagram is the only operator that can contribute to a(x) higher twist: theoretically very interesting! σ_L contributions cancel (c) Castorina & Mulders, '84 Krishna Kumar, August 19, 2019

d/u with SOLID

Polarized Targets

News from UNH Polarized Target Lab

New 'slow-freezing' ammonia production technique: 'Coldfinger'

 Aliaga, D. et al. Temperature-controlled crystal formation with a new prototype cryogenic device (2019), Manuscript in preparation.

8/18/2019

HiX2019 Elena Long <elena.long@unh.ed>

20

b_1 probes nuclear effects at quark resolution! $b_1(x) = \frac{q^0(x) - q^{\pm 1}(x)}{2}$ Tensor Structure Function, b_1

- All conventional models predict small or vanishing values of b₁
 - HERMES found something very different!
- Any measurement of $b_1 < 0$ indicates exotic physics +

A Airapetian, *et al*, PRL **95** 242001 (2005) K Slifer, *et al*, JLab C12-13-011

+ Insight in Close-Kumano Sum Rule ^{S Ku}&a@upapleOntofical(2014)

FE Close, S Kumano, PRD **42** 237 SK Taneja *et al,* PRD **86** 036008 G Miller, PRC **89** 045203

8/18/201

HiX2019 Elena Long <elena.long@unh.ed>

9

Many other polarized targets under development

• Bonn, Jlab, INFN-Ferrara, COMPASS, LANL-Uva....

New Neutrino DIS Proposal

• Novel technique to measure $\nu(\bar{\nu})$ -Hydrogen by subtracting CH₂ and C targets:

- Exploit high vertex, angular & time resolutions of STT to locate interactions within targets;
- Model-independent data subtraction of dedicated C (graphite) target from main CH₂ target;
- Kinematic selection provides clean H samples of inclusive & exclusive CC topologies with 80-95% purity and >90% efficiency before subtraction.

 \implies Viable and realistic alternative to liquid/gaseous H_2 detectors

Much better statistics and understanding of flux

New Neutrino DIS Proposal

• Novel technique to measure $\nu(\bar{\nu})$ -Hydrogen by subtracting CH₂ and C targets:

- Exploit high vertex, angular & time resolutions of STT to locate interactions within targets;
- Model-independent data subtraction of dedicated C (graphite) target from main CH₂ target;
- Kinematic selection provides clean H samples of inclusive & exclusive CC topologies with 80-95% purity and >90% efficiency before subtraction.

 \implies Viable and realistic alternative to liquid/gaseous H_2 detectors

Much better statistics and understanding of flux

Talk of R. Petti

Cloët et al., Phys Lett B693 (2010) 462

STRUCTU

SIDIS multiplicities: kaons off the proton

R_{k} of proton target

- analysis of 2016 data ($1 H_2$ target) ongoing
- same bins as for the iso-scalar target data (integrating over z and averaging over y)
- R_{κ} of the proton expected 10-20% higher compared to the isoscalar case.

Important message: HERMES and COMPASS data are still in tension Can not be explained only by different Q^2 range, the discussion is going on.

JAM 2019 analysis

A NQF@M2 beam line of the SPS CERN COMPASS++/AMBER Letter of Intent

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN-SPSC-2019–003 SPSC-I-250 January 25, 2019

http://arxiv.org/abs/1808.00848 January

Apparatus for Meson and Baryon Experimental Research

Letter of Intent: A New QCD facility at the M2 beam line of the CERN SPS^{*} COMPASS++[†]/AMBER[‡]

B. Adams^{13,12}, C.A. Aidala¹, R. Akhunzyanov¹⁴, G.D. Alexeev¹⁴, M.G. Alexeev⁴¹, A. Amoroso^{41,42},

25 Jan 2019

[hep-ex]

Jan Friedrich - HiX2019 Kolympari

COMPASS++/AMBER the full "Lol" programme

	Physics	Beam	Beam	Trigger	Beam		Earliest	Hardware
Program	Goals	Energy	Intensity	Rate	Туре	Target	start time,	additions
		[GeV]	$[s^{-1}]$	[kHz]			duration	
muon-proton	Precision					high-		active TPC,
elastic	proton-radius	100	$4 \cdot 10^{6}$	100	$\mid \mu^{\pm}$	pressure	2022	SciFi trigger,
scattering	measurement					H2	2 years	silicon veto,
Hard								recoil silicon,
exclusive	GPD E	160	$2 \cdot 10^7$	10	$\mid \mu^{\pm}$	$\rm NH_3^{\uparrow}$	2022	modified polarised
reactions						_	2 years	target magnet
Input for Dark	\overline{p} production	20-280	$5 \cdot 10^5$	25	p	LH2,	2022	liquid helium
Matter Search	cross section					LHe	1 month	target
			_					target spectrometer:
\overline{p} -induced	Heavy quark	12, 20	$5 \cdot 10^7$	25	\overline{p}	LH2	2022	tracking,
spectroscopy	exotics						2 years	calorimetry
Drell-Yan	Pion PDFs	190	$7 \cdot 10^7$	25	π^{\pm}	C/W	2022	
							1-2 years	
Drell-Yan	Kaon PDFs &	~ 100	10 ⁸	25-50	K^{\pm}, \overline{p}	$\mathrm{NH}_{3}^{\uparrow},$	2026	"active absorber",
(RF)	Nucleon TMDs					C/Ŵ	2-3 years	vertex detector
	Kaon polarisa-						non-exclusive	
Primakoff	bility & pion	~ 100	$5 \cdot 10^6$	>10	K^{-}	Ni	2026	
(RF)	life time						1 year	
Prompt							non-exclusive	
Photons	Meson gluon	≥ 100	$5 \cdot 10^6$	10-100	K^{\pm}	LH2,	2026	hodoscope
(RF)	PDFs				π^{\pm}	Ni	1-2 years	
K-induced	High-precision							
Spectroscopy	strange-meson	50-100	$5 \cdot 10^6$	25	K^{-}	LH2	2026	recoil TOF,
(RF)	spectrum						1 year	forward PID
	Spin Density							
Vector mesons	Matrix	50-100	$5 \cdot 10^6$	10-100	K^{\pm}, π^{\pm}	from H	2026	
(RF)	Elements					to Pb	1 year	

Plan for new Drell-Yan measurments with π^+ and π^- beams at COMPASS (using solid carbon and W targets)

Beam type (GeV)	Beam intensity (part/sec)	Target type	DY mass (GeV/c^2)	DY events
π^{+} 190	1.7×10^{7}	$100 \mathrm{cm} \mathrm{C}$	4.3 - 8.5	23000
			3.8 - 4.3	14000
			2.0 - 3.8	133000
π^{-} 190	6.8×10^{7}	$100 \mathrm{cm} \mathrm{C}$	4.3 - 8.5	22000
			3.8 - 4.3	12000
			2.0 - 3.8	127000
π^{+} 190	0.2×10^{7}	$24 \mathrm{cm} \mathrm{W}$	4.3 - 8.5	7000
			3.8 - 4.3	4000
			2.0 - 3.8	40000
π^{-} 190	1.0×10^{7}	$24 \mathrm{cm} \mathrm{W}$	4.3 - 8.5	6000
			3.8 - 4.3	3000
			2.0 - 3.8	39000

- This would represent a major increase for DY data with π^+ beam
- Intense kaon beams with RF-separator are also been actively considered

From J-C Peng

Nucleon PDFs

d/u ratio

- Fundamental to understanding non-perturbative dynamics within the nucleon – di-quarks, correlations etc....
- Many talks: Christy (BoNUS), Hauenstein, Kumar (SoLID), Malace, Melnitchouk, Nicolescu (duality), Petratos (Marathon)

Nucleon F₂ Ratio Extraction Revisited

SLAC DIS Data

Whitlow (1992): Assumes EMC effect in deuteron (Frankfurt and Strikman data-based Density Model)

Melnitchouk & Thomas (1996): Relativistic convolution model with empirical binding effects

Bodek (1992): Non-relativistic Fermi smearing model with Paris N-N potential. Note: at large x there is significant dependence on the N-N potential used (Paris, Bonn, Argonne, etc.)

The 3H, 2H, 1H, 3He High Pressure Gas Cells Target Ladder Structure

Tritium cell was filled at the Tritium Handling Facility of Savannah River National Laboratory (1,100 Curies).

A little fun

Sea quarks

JAM 2019 analysis

First simultaneous analysis of DIS plus SIDIS

mean reduced $\chi^2 = 1.3$ for all data

Sato, Andres, Ethier, WM (2019)

 \rightarrow valence & light sea quark broadly in agreement with other groups

ightarrow striking suppression of strange PDF compared to ATLAS extraction

Polarized Structure Functions

Simultaneous spin PDF + FF analysis

■ Polarized strangeness in previous, DIS-only analyses was negative at $x \sim 0.1$, induced by SU(3) and parametrization bias

- \rightarrow weak sensitivity to Δs^+ from DIS data & evolution
 - SU(3) pulls Δs^+ to generate moment ~ -0.1

— negative peak at $x \sim 0.1$ induced by fixing $b \sim 6 - 8$

JAM analysis

Talk of C. Kim: Phenix

2. Nucleon helicity – <u>a. $\Delta \overline{q}$ </u> STAR, W A₁ (2011-2013)

PRD99, 051102 (2019) Sea Asymmetry 0.08 $x(\Delta \overline{u} - \Delta \overline{d})$ 0.06 0.04 0.02 0 $Q^2 = 10 (\text{GeV}/c)^2$ -0.02NNPDFpol1.1 NNPDFpol1.1rw -0.04 10^{-2} 10^{-1} X

- $W \rightarrow e \; A_{_L}$, $|\eta| < 1.3$
 - Int. L = 86 (2011-2012) + 250 (2013) pb⁻¹
 - Signal extraction by e^{\pm} isolation + missing energy detection + Jacobian peak
 - 0.05 < x < 0.25

Delta ubar > Delta dbar predicted in bag model then xSM in early 90's

- Sizable positive $\Delta \overline{u}$ / negative $\Delta \overline{d}$ observed
- Clear flavor asymmetry ($\Delta \overline{u} \Delta d$)

Extracting $\Delta q/q$ from both proton and neutron (³He) data

UNIVERSITY / VIRGINIA

X. Zheng, HiX2019, August 16-21, 2019, Crete, Greece

Extraction of Excess of dbar over ubar: Sea uest

Some Results: The Cross Section Ratio

- D/H ratio, vs. PDF fits
- This result released sea quark ratio extraction is not

$$\frac{\sigma^{pd}}{2\sigma^{pp}}\Big|_{(x_{beam} >> x_{targ})} \approx \frac{1}{2} \left[1 + \frac{\overline{d}(x_{targ})}{\overline{u}(x_{targ})} \right]$$

Talk of R. Gilman

Extraction of Excess of dbar over ubar: Sea Uest

Some Results: The Cross Section Ratio

- D/H ratio, vs. PDF fits
- This result released sea quark ratio extraction is not

Gotcha!

$$\frac{\sigma^{pd}}{2\sigma^{pp}}\Big|_{(x_{beam} >> x_{targ})} \approx \frac{1}{2} \left[1 + \frac{\overline{d}(x_{targ})}{\overline{u}(x_{targ})} \right]$$

Gilman

Theory: Quasi-PDFs

Lattice studies of quasi-PDFs

Pion Structure – DSE and Drell-Yan

Self-Consistent DSE Results

- For pion and kaon PDFs included for first time gluons self-consistently
 - correct RL-DSE pion PDFs in excellent agreement with Conway *et al.* data and recent JAM analysis
 - agrees with $x \to 1$ pQCD prediction
- Treating non-perturbative gluon contributions correctly pushes support of $q_{\pi}(x)$ to larger x
 - gluons remove strength from q_π(x) at low to intermediate x baryon number then demands increased support at large x
 - cannot be replicated by DGLAP DSE splitting functions are dressed
- Immediate consequence of gluon dressing is that gluons carry 35% of pion's and 30% of kaon's momentum

From talk of I. Cloët

A Three-dimensional Picture of the Nucleon

Toward a more complete description of the nucleon

GPDs and TMDs

PREDICTIONS THAT REQUIRE TMDS

from A. Apyan's talk at LHC EW Precision sub-group workshop https://indico.cern.ch/event/801961/

There is an entire industry of tools that make predictions for observables that involve TMDs. Most of them neglect important effects (especially at low p_T) coming from nonperturbative TMD components.

From talk of A. Bacchetta

FIRST TMD GLOBAL FIT

3D DISTRIBUTIONS EXTRACTED FROM DATA

Bacchetta, Delcarro, Pisano, Radici, Signori, arXiv:1703.10157 Bertone, Scimemi, Vladimirov, arXiv:1902.08474

GPDs and factorization

Talk of J. Roche

D. Mueller *et al*, Fortsch. Phys. 42 (1994) X.D. Ji, PRL 78 (1997), PRD 55 (1997) A. V. Radyushkin, PLB 385 (1996), PRD 56 (1997)

The minimal Q² at which the factorization holds **must be tested** and established by **experiments**

DVCS Hall A@Jlab12 3rd generation

Talk of J. Roche

E=8.5, Q^2 = 3.6, x_B =0.36, t - t_{min} [-0.186, -0.124]

DVCS Hall A@Jlab 3rd generation (12 GeV data)

In depth study of trigger efficiency delayed the publication: Could not resolve a 5% systematic inefficiency.

Nuclei

- SRC and tensor force
- EMC effect
- x>1
- PDF analysis (not discussed c.f. I. Schienbein)

Role of Tensor Force in SRC – Talk of O. Hen

- Established in beautiful series of experiments at Jlab
- Resolves a decades old dispute with Arima's group as the winner

STRUCTU

x>1: New CLAS results

B. Schmookler et al., Nature 566 (2019) 354-358.

HiX 2019

x>1 Ratios and EMC Slope Correlation

L. Weinstein et al., Phys. Rev. Lett. 106 (2011) 052301.

Linear relation proposed as evidence that SRC explain the EMC effect

B. Schmookler et al., Nature 566 (2019) 354-358.

$$F_2^A = (Z - n_{SRC}^A)F_2^p + (N - n_{SRC}^A)F_2^n + n_{SRC}^A(F_2^{p*} + F_2^{n*})$$

= $ZF_2^p + NF_2^n + n_{SRC}^A(\Delta F_2^p + \Delta F_2^n),$

From talk of D. Higinbotham

'Global' EMC Data

Origin of the EMC Effect

High Virtuallity vs. Local Density

The plots on the left and right side are exactly the same data.

The simpler model (i.e. a constant) is consistent with both universal functions.

One should define there criterion for adding parameters to a regression. (see Higinbotham *et al.*, Phys. Rev. C. 93 (2015) 055207 for examples)

NOTE: When handled consistently, HV and LD give exactly the same 'a2' values. https://arxiv.org/abs/1907.03658

HiX 2019

Alternate Explanation Based Upon Quark-Level Description of Nuclear Structure

Overview of 739 even-even nuclei

Neutron number, N

Martinez et al., arXiv:1811.06628

Summary: Finite Nuclei

- The effective force was *derived* at the quark level based upon changing structure of bound nucleon
- Has many less parameters but reproduces nuclear properties at a level comparable with the best phenomenological Skyrme forces
- Looks like standard nuclear force
- BUT underlying theory also predicts modified internal structure and hence modified
 - DIS structure functions
 - elastic form factors.....

Theoretical Understanding

- Still numerous proposals but few consistent theories
- Initial studies used MIT bag¹ to estimate effect of self-consistent change of structure in-medium
 but better to use a covariant theory
- For that Bentz and Thomas² re-derived change of nucleon structure in-medium in the NJL model
- This set the framework for sophisticated studies by Bentz, Cloët and collaborators over the last decade

¹ Thomas, Michels, Schreiber and Guichon, Phys. Lett. B233 (1989) 43 ² Bentz and Thomas, Nucl. Phys. A696 (2001) 138

EMC Effect for Finite Nuclei

(There is also a spin dependent EMC effect - as large as unpolarized)

FIG. 7: The EMC and polarized EMC effect in ¹¹B. The empirical data is from Ref. [31].

FIG. 9: The EMC and polarized EMC effect in $^{27}\mathrm{Al.}\,$ The empirical data is from Ref. [31].

SPECIAL RESEARCI

SUBAT ()MIC

Cloët, Bentz & Thomas, Phys. Lett. B642 (2006) 210

Approved JLab Experiment

- Effect in ⁷Li is slightly suppressed because it is a light nucleus and proton does not carry all the spin (simple WF: $P_p = 13/15$ & $P_n = 2/15$)
- Experiment now approved at JLab [E12-14-001] to measure spin structure functions of ⁷Li (GFMC: $P_p = 0.86$ & $P_n = 0.04$)
- Everyone with their favourite explanation for the EMC effect should make a prediction for the polarized EMC effect in ⁷Li

Other tests (e.g. Isovector EMC effect)

SPECIAL RESEARCI

STRUCTU

Spin-EMC Effect is a crucial test

- Tensor correlations leading to high momentum components in nuclear wave function have been proposed as an alternate explanation of the EMC effect
- The tensor force scatters ³S₁ pairs almost entirely into ³D₁ at high momentum (~84% at p > 400 MeV/c)
- Nucleons in SRC are depolarized simple Clebsch-Gordan coefficients - and cannot contribute to spin-EMC effect
- That is SRC predicts essentially NO spin-EMC effect

ERSITY AWT - Int J Mod Phys 27 (2018) 1840001 (Ernest Henley Memorial)

Apologies to those I missed and for any errors of fact or judgement

