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Boosted objects at the LHC

I At LHC energies, EW-scale particles (W/Z/t. . . ) are often produced
with pt � m, leading to collimated decays.

I Hadronic decay products are thus often reconstructed into single jets.

[Figure by G. Soyez]
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LOOKING INSIDE JETS
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the two major goals of the LHC

search for new particles 

characterise the particles we know

jets can be formed by QCD particles                          
but also by the decay of massive particles                          
(if they are sufficiently boosted)

how can we distinguish signal jets from                 
background ones?

courtesy of G. Soyez
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SUBSTRUCTURE IN A NUTSHELL

4

the final energy deposition pattern is 
influenced by the originating splitting 

hard vs soft translate into 2-prong vs        
1-prong structure

picture is mudded by many effects 
(hadronisation, Underlying Event, pileup)

two-step procedure:

grooming: clean the jets up by removing 
soft radiation
tagging: identify the features of hard 
decays and cut on them       

different energy 
deposition pattern

courtesy of G. Soyez
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A THEORIST’S JOB
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devise clever ways to project the multi-dimensional 
parameter space of final-state momenta into 
suitable lower dimensional (typically 1-D) 
distributionscalorimeter tower granularity. In the next section, we will discuss the nuances of standardizing the

coordinates of a jet image as a pre-processing step prior to applying machine learning.
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Figure 1: The distributions of the jet mass (top left), ⌧21 (top right) and the �R between subjets
(bottom) for signal (blue) and background (red) jets.

3 Pre-processing and the Symmetries of Space-time

In order for the machine learning algorithms to most e�ciently learn discriminating features between
signal and background and to not learn the symmetries of space-time, the jet images are pre-processed.
This procedure can greatly improve performance and reduce the required size of the sample used for
testing. Our pre-processing procedure happens in four steps: translation, rotation, re-pixelation, and
inversion. To begin, the jet images are translated so that the leading subjet is at (⌘,�) = (0, 0).
Translations in � are rotations around the z-axis and so the pixel intensity is unchanged by this
operation. On the other hand, translations in ⌘ are Lorentz boosts along the z-axis, which do not
preserve the pixel intensity. Therefore, a proper translation in ⌘ would modify the pixel intensity.
One simple modification of the jet image to circumvent this change is to replace the pixel intensity
Ei with the transverse energy pT,i = Ei/ cosh(⌘i). This new definition of intensity is invariant under
translations in ⌘ and is used exclusively for the rest of this paper2.

The second step of pre-processing is to rotate the images around the center of the jet. If a jet has
a second subjet, then the rotation is performed so that the second subjet is at �⇡/2. If no second
subjet exists, then the jet image is rotated so that the first principle component of the pixel intensity
distribution is aligned along the vertical axis. Unless the rotation is by an integer multiple of ⇡/4, the
rotated grid will not line up with the original grid. Therefore, the energy in the rotated grid must be
re-distributed amongst the pixels of the original image grid. A cublic spline interpolation is used in
this case - see Ref. [4] for details. The last step is a parity flip so that the right side of the jet image
has the highest sum pixel intensity.

Figure 2 shows the average jet image for W boson jets and QCD jets before and after the rotation,
re-pixelation, and parity flip steps of the pre-processing. The more pronounced second-subjet can
already be observed in the left plots of Fig. 2, where there is a clear annulus for the signal W jets
which is nearly absent for the background QCD jets. However, after the rotation, the second core of
energy is well isolated and localized in the images. The spread of energy around the leading subjet

2Transverse energy based pixel intensity was used in the original Jet-Images paper [4]
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courtesy of G. Soyezfor an introduction see SM, Soyez, Spannowsky 

http://inspirehep.net/record/1717499


FROM IDEAS TO PRECISION

understanding of groomers and taggers led to the definition of theory-friendly efficient 
tools, e.g. soft drop:  

good perturbative properties (convergence, absence of soft effects such as non-
global logs)

small (but non-trivial) non-perturbative corrections
6

discussions at BOOST 2013
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Figure 11: NLL matched (left) and NNLL matched (right) distributions for hardest jet e(2)
2

in pp ! Z + j events with soft drop grooming zcut = 0.1 and � = 0 and � = 1. Estimates

of theoretical uncertainties are represented by the shaded bands. For soft drop with � = 1,

the dotted lines represent the extent of the theoretical uncertainties when the variation of

the two-loop non-cusp anomalous dimension is included. The distributions in the two upper

figures are normalized to the total cross section (in femtobarns), while in the bottom figures,

the distributions integrate to the same value over the range e(2)
2

2 [0.001, 0.1]. Note the

reduction in uncertainties as one moves from NLL to NNLL, and also as one considers the

normalized distribution.

renormalization scales in MCFM by a factor of 2 about 500 GeV ' pTJ . We then take the

envelope of all of these scale variations to produce the shaded bands in Fig. 11. For � = 1 at

NNLL, we have also explicitly shown the additional uncertainty due to the two-loop non-cusp

anomalous dimension of the collinear-soft function. In going from NLL to NNLL accuracy,

the relative size of the scale uncertainty bands decreases by about a factor of 2 or 3 for both

– 39 –

Frye, Larkoski, 
Schwartz, Yan (2016)

Hoang,  Mantry, Pathak, Stewart (2019)



FROM THEORY TO DATA
time is mature for theory / data comparison

reduced sensitivity to non-pert physics (hadronisation and UE) should make the comparison 
more meaningful

what is the value of unfolded measurements / theory comparisons for “discovery” tools?

 understanding systematics (e.g. kinks and bumps)

 where non-pert. corrections are small, test perturbative showers in MCs

 at low mass, hadronisation is large but UE is small: TUNE!
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THEORY PREDICTIONS…
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SM, Schunk, Soyez (2017,2018) 
see also Frye et al. (2016) and 

Kang et al. (2018)
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…AND THE DATA
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SM, Schunk, Soyez (2017,2018) 
see also Frye et al. (2016) and 

Kang et al. (2018)
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PERFORMANCE & RESILIENCE
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CHAPTER 8. TWO-PRONG TAGGING WITH JET SHAPES 144
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Figure 8.7: Summary of the performance (significance) v. robustness (resilience) of a
set of two-prong taggers based on the combination of a prong finder and a shape cut.

• As pt increases, the discriminating power increases as well. This can be explained
by the fact that when pt increases, the phase-space for radiation becomes larger,
providing more information that can be exploited by the taggers;

• The main observations from the previous section still largely hold: dichroic variants
and variants based on D2 give the best performance. One possible exception is the
case of D

(2)
2 [` ⌦ `/`] (i.e. both the mass and D2 computed on the loose (SoftDrop)

jet), which shows a slightly larger performance than our D
(2,dichroic)
2 working point,

albeit with a smaller resilience.6 One aspect which is to keep in mind here is that
using a looser grooming to measure the jet mass could have the benefit of avoiding
the 1 � 2zcut signal e�ciency factor before any shape cut is applied, of course
probably at the expense of more distortion of the W peak.

• Generically speaking, there is a trade-o↵ between resilience and performance. This
is particularly striking if one looks along the optimal line. This is an essential
feature to keep in mind when designing boosted-object taggers: keeping more
radiation in the jet (by using a looser groomer) or putting tighter constraints
on soft radiation at larger angles typically leads to more e�cient taggers but at
the same time yields more sensitivity to the regions where hadronisation and the

6If we were seeking absolute performance without any care for resilience, this suggests that even
looser groomers, possibly combined with a dichroic approach, could yield an even greater performance.

CHAPTER 5. JET SUBSTRUCTURE: CONCEPTS AND TOOLS 63

jet definitions discussed in Chapter 3, we may want additional conditions such as the
following:

• we would like to work with tools that are infrared and collinear safe, i.e. which are
finite at any order of the perturbation theory,1

• we would like to work with tools that are as little sensitive as possible to model-
dependent non-perturbative e↵ects such as hadronisation and the Underlying Event,

• we would like to work with tools that are as little sensitive as possible to detector
e↵ects and pileup.

In a way, the last two of the above criteria are related to the robustness of our tools, i.e.
we want to be able to assess how robust our conclusions are against details of the more
poorly-known (compared to the perturbative part) aspects of high-energy collisions.
One should typically expect that a more robust tool would have a smaller systematic
uncertainty associated with theory modelling. (e.g. the dependence on which Monte
Carlo sample is used), pileup sensitivity and detector sensitivity/unfolding.

Robustness can be quantified in several ways, typically by measuring how the signal
and background e�ciencies are a↵ected by a given e↵ect (see e.g. [115, 116, 117]). Some
concrete ideas about how to assess robustness were put forward in Ref. [117] (Section
III.2). Let us say that we want to test the sensitivity of a tagger with respect to the UE.
From a Monte Carlo simulation, we can compute the signal and background e�ciencies,
first without UE, ✏S,B ⌘ ✏

(no UE)
S,B

, and then with UE ✏
0
S,B

⌘ ✏
(UE)
S,B

. We define resilience, a
measure of robustness, as

⇣ =
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2
S

h✏i
2
S

+
�✏

2
B

h✏i
2
B

!�1/2

(5.1)
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0
S,B

, (5.2)
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S,B

=
1

2

�
✏S,B + ✏

0
S,B

�
. (5.3)

With this definition, a large resilience means that the signal and background e�ciencies
have not changed much when switching the UE on and hence that the tool is robust.
Resilience can be defined for hadronisation, i.e. when switching on hadronisation and
going from parton level to hadron level, for the UE, as discussed above, for pileup
sensitivity, i.e. when overlaying the event with pileup and applying a pileup mitigation
technique, and for detector sensitivity, i.e. when running events through a detector
simulation.

1An interesting class of observables, known as Sudakov safe, fails to fully satisfy this condition but
remain calculable once a proper all-order calculation is performed. We will briefly come back to such
observables in Section 9.
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first-principle understanding of groomers’ and taggers’ 
perturbative properties has reached remarkable levels 

resilience measures a tagger’s robustness against non-
perturbative effects (hadronisation and UE)

 it is defined in terms of signal/background efficiencies 
with/without non-pert. contributions Looking inside 
jets



Safe use of old observables
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HARD WORK DOES PAY OFF
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5

A binned maximum likelihood fit to the observed mSD distributions in the range 40 to 201 GeV
with 7 GeV bin width is performed using the sum of the H(bb), W, Z, tt, and QCD multijet
contributions. The fit is done simultaneously in the passing and failing regions of the six pT
categories within 450 < pT < 1000 GeV, and in the tt-enriched control region. The production
cross sections relative to the SM cross sections (signal strengths) for the Higgs and the Z bosons,
µH and µZ, respectively, are extracted from the fit. Figure 1 shows the mSD distributions in data
for the passing and failing regions with measured SM background and H(bb) contributions.
Contributions from W and Z boson production are clearly visible in the data.
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Figure 1: The mSD distributions in data for the failing (left) and passing (right) regions and
combined pT categories. The QCD multijet background in the passing region is predicted using
the failing region and the pass-fail ratio Rp/f. The features at 166 and 180 GeV in the mSD
distribution are due to the kinematic selection on r, which affects each pT category differently.
In the bottom panel, the ratio of the data to its statistical uncertainty, after subtracting the
nonresonant backgrounds, is shown.

The measured Z boson signal strength is µZ = 0.78 ± 0.14 (stat)+0.19
�0.13 (syst), which corresponds

to an observed significance of 5.1 standard deviations (s) with 5.8s expected. This consti-
tutes the first observation of the Z boson signal in the single-jet topology [65] and validates
the substructure and b tagging techniques for the Higgs boson search in the same topology.
The measured cross section for the Z+jets process for jet pT > 450 GeV and |h| < 2.5 is
0.85 ± 0.16 (stat)+0.20

�0.14 (syst) pb, which is consistent within uncertainties with the SM produc-
tion cross section of 1.09 ± 0.11 pb [30]. Likewise, the measured Higgs boson signal strength
is µH = 2.3 ± 1.5 (stat)+1.0

�0.4 (syst) and includes the corrections to the Higgs boson pT spectrum
described earlier. The corresponding observed (expected) upper limit on the Higgs boson sig-
nal strength at a 95% confidence level is 5.8 (3.3), while the observed (expected) significance
is 1.5s (0.7s). The observed µH implies a measured ggF cross section times H(bb) branching
fraction for jet pT > 450 GeV and |h| < 2.5 of 74± 48 (stat)+17

�10 (syst) fb, assuming the SM values
for the ratios of the different H(bb) production modes. This measurement is consistent within
uncertainties with the SM ggF cross section times H(bb) branching fraction of 31.7 ± 9.5 fb.

Table 2 summarizes the measured signal strengths and significances for the Higgs and Z boson
processes. In particular, they are also reported for the case in which no corrections to the Higgs
boson pT spectrum are applied. Figure 2 shows the profile likelihood test statistic scan in data
as function of the Higgs and Z boson signal strengths (µH, µZ).

Z : 5.1σ
H : 1.5σ

Phys.Rev.Lett. 120 (2018) no.7, 071802 

• state-of-the art jet 
reconstruction (anti-kt 

& particle-flow)

• b-tagging

• soft-drop grooming
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with energy 
correlation function 
N12

• decorrelation: 
N12→N1,DDT2

• QCD and EW 
corrections to obtain 
Z+jets and W+jets

• Higgs pT spectrum 
corrected for finite 
top mass effects

• inclusion of N3LO 
normalisation

• matching NLO-PS

• state-of-the arts PDFs

http://inspirehep.net/record/1624166
https://indico.cern.ch/event/760184/contributions/3290882/attachments/1832975/3002334/SMLHC_higgsPT.pdf
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Figure 2: Postfit plot of the SM Higgs boson, V + jets, tt̄ and QCD fit comparison to data. The middle panel shows
the postfit and data distributions with the QCD and tt̄ components subtracted. The lower panel shows the same
distributions when also the V + jets component is subtracted.
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ATLAS-CONF-2018-052 

• state-of-the art jet 
reconstruction (anti-kt 

& topoclusters)

• b-tagging

• trimming

• 2-prong jets identified 
by requiring two track 
subjets with variable R

• QCD and EW 
corrections to obtain 
Z+jets and W+jets

• Higgs pT spectrum 
corrected for finite 
top mass effects

• inclusion of N3LO 
normalisation

• matching NLO-PS

• state-of-the arts PDFs

https://indico.cern.ch/event/760184/contributions/3290882/attachments/1832975/3002334/SMLHC_higgsPT.pdf
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DIFFERENCES IN GROOMING:
SOFT-DROP VS TRIMMING

14

CMS favours soft drop,  ATLAS trimming

Performance depends on the detail of the jet 
reconstruction procedure / detector

However, performance is not the only criterion

Trim

log
R

✓

log
1
z

z = zcut

� > 0

trimmed

✓ = Rsub

soft dropped

trimming has an abrupt change of 
behaviour due to fixed Rsub

loss of efficiency at high pT

in SD angular resolution controlled by the 
exponent β: phase-space appears smoother

SD under better theory control



DIFFERENCES IN TAGGING:
SHAPE VS VARIABLE-R
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CMS analysis cuts on a shape to isolate         
2-pronged jets

N12 is a ratio of generalised energy correlation 
functions optimised to work after grooming

DDT is a procedure to de-correlate the mass 
from the jet shape cut, reducing sculpting

Moult, Necib, Thaler (2016)

Dolen, Harris, SM, Nhan, Rappoccio (2016)

ATLAS analysis looks for 2 track jets using 
variable-R jets Krohn, Thaler, Wang (2009)
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Figure 1: The same event reconstructed by anti-kT (left) and its VR modification (right). Note
that in going to the VR algorithm, the high-pT jets (dark blue, green) have been reduced in size
while softer jets (yellow, purple, light blue) have grown. In this example, only the two harder jets
are expected to exhibit VR-symmetry, and the softer jets are saturating the Rmax = 1.0 constraint.

momenta based on the calorimeter energy. These calorimeter cells are the starting point
for the recursive jet clustering.

We use the FastJet 2.3.4 [1, 2] package for the AKT and CA algorithms, and we
wrote new FastJet plugins for the AKT-VR and CA-VR algorithms. For each kinematic
scenario, we scan over a range of jet parameters to optimize the jet algorithm performance.
To keep the comparison fair, we limit the maximum e↵ective �R of the VR jet cones
using Rmax as in Eq. (2.7), and scan the R0 parameter of the fixed cone algorithms from
0 to Rmax. In the three cases below, we find a universal improvement in using the VR
algorithms over their fixed �R cousins.

3.1 Resonance Decays Without Background

The simplest test of a jet algorithm is resonance reconstruction without standard model
background. We consider resonances with backgrounds in Section 4. Here we consider
the scenario of a color-octet scalar X, of negligible width, in the process gg ! X !

gg.2 We scan the jet parameters up to a maximum radius Rmax = 1.5, and optimize the
parameters to maximize the percentage of events reconstructed in a narrow mass window
(mX ± 25 GeV) around the true resonance mass.3 The results of this optimization are
shown in Table 3 for four di↵erent values of mX .

The resonance invariant mass plots from this analysis can be seen in Figures 2 and
3. The results indicate a uniform improvement in going from the original algorithms to
their VR variants: the reconstructed resonances are narrower and taller. The relatively
large cone sizes found in the optimization should not be troubling as similar results were
found in Ref. [12]. The optimized choices of ⇢ displayed in Table 3 also make intuitive
sense. We expect most of these jets to have a pT slightly below half the resonance mass,

2The X couples to gluons via the operator Tr(XGµ⌫Gµ⌫).
3The ±25 GeV mass window was chosen by hand to approximate the width of the reconstructed peaks

after showering and hadronization. It is not related to the perturbative resonance width, which is zero, or

calorimeter smearing, whose e↵ects we have not included.
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is, those whose diB > dcut). Here we will focus on inclusive algorithms because they are in
more widespread use and because not all algorithms have well-defined exclusive modes.1

It is possible to parameterize the most popular sequential recombination algorithms
for use at hadron colliders via [9]

dij = min
⇥
p2n

Ti, p
2n
Tj

⇤
R2

ij , diB = p2n
Ti R2

0, (2.1)

where the values of n for particular algorithms are listed in Table 1, Rij is the �R sep-
aration between the two four-momenta, and R0 is a free parameter that determines the
characteristic jet size. Roughly, n > 0 clusters soft items first, n = 0 clusters by angle, and
n < 0 clusters from hard particles outward. We will be particularly interested in algorithms
with n  0, because as emphasized in Ref. [9], such recursive jet algorithms act much like
an idealized cone-based algorithm for su�ciently negative values of n.

Algorithm n

kT [4, 5] 1
Cambridge-Aachen [6, 7] 0

Anti-kT [9] �1

Table 1: Parameterization of popular sequential recombination algorithms according to Eq. (2.1).

At lepton colliders, Eq. (2.1) is usually modified by replacing pT i with the energy Ei,
and Rij with the arc length Sij on the (✓,�) sphere defined by �S =

p
(�✓)2 + (sin ✓ ��)2.

This �S measure will be part of the inspiration for the jet algorithms presented in Sec-
tion 2.3.

2.2 Variable �R Algorithms

We now generalize Eq. (2.1) so that

dij = min
⇥
p2n

Ti, p
2n
Tj

⇤
R2

ij , diB = p2n
TiRe↵(pT i)2, (2.2)

where Re↵(pT i) is a dimensionless number interpreted as an e↵ective jet radius for n  0.
Since Eq. (2.2) is invariant to boosts along the beam axis, it is appropriate for use at
hadron colliders. See Appendix A for more detail on the possible choices for Re↵ and the
restriction to n  0.

To see why Re↵ is an e↵ective radius for n  0, consider the clustering of two four-
momenta i and j. These will only be clustered together if

dij < diB, djB. (2.3)

1For instance, the anti-kT algorithm [9] assigns smaller diB to harder jets, so these would be merged

with the beam and not identified as jets if the algorithm were run with a dcut.
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separation. Since invariant mass is a boost invariant quantity, so is E�S. More formally,
for small angles

E�S ⇡ pT �R, (2.6)

where we have used the fact that E ⇡ pT cosh ⌘ (true for small jet mass) and �S ⇡

�R/ cosh ⌘ (see Appendix B). Since pT and �R are invariant under boosts along the
beam axis, so is E�S to first approximation. We emphasize that this is true even for
boosts transverse to the beam axis; just define a new (⌘, �) coordinate system along the
boost axis and go through the same procedure to show that E�S is invariant.

Putting this all together, we want build a jet algorithm that captures the fact that
the two jets have constant opening angle in their mother’s rest frame. Since E�S is
approximately boost invariant, this is equivalent to forming jets of constant E�S in any
convenient frame. In particular, in the lab frame we can use Eq. (2.6) to swap E�S for
pT �R. Therefore, to get jets of constant E�S, we should choose Re↵ to scale like 1/pT as
in Eq. (2.5). This defines the VR jet algorithms.

From this logic, we expect the parameter ⇢ to be proportional to the typical jet size
measure E�S, and thus proportional to the resonance mass mres.. For a more detailed
discussion of the valid parameter range for ⇢, see Appendix B.

2.4 Event Topologies with VR-symmetry

The VR scaling of Eq. (2.5) is applicable whenever there is reason to expect all jets in an
event to have the same E�S in some frame, and we call these events “VR-symmetric”.
This is certainly the case for a single resonance decay. Less obvious is that this is true for
longer cascade decays; even if a cascade involves many intermediate states, it will still be
VR-symmetric as long as all jets come from the decay of resonances with a common mass.
VR-symmetry can even be satisfied when there is no actual reconstructable resonance. For
example, the three-body gluino decay g̃ ! 2j + �̃0

1 would satisfy the requirement toward
the kinematic endpoint. We will discuss these scenarios in more detail in the next section.

An important example without VR-symmetry is initial state radiation (ISR). Jets
from ISR do not have a preferred mother rest frame and so the VR jet cone scaling is not
appropriate. In the case of resonance production plus ISR, the hardest two jets will have
the VR scaling, but the ISR will not, so in principle, a hybrid VR/fixed-cone algorithm
could have better jet reconstruction performance. While we will include ISR in our Monte
Carlo simulations, we will only study the hardest jets in an event for which VR-symmetry
is expected to apply.

Now we would like to address a few caveats to the VR derivation in Section 2.3. We
derived our expression for Re↵ in the small cone limit. In practice, one must account
for corrections in going to finite-sized jets when choosing reasonable jet parameters (see
Appendix B). Similarly, for low pT the algorithm would return pathologically large jets,
so one is forced to cut o↵ the jet radius at some Rmax, so that

Re↵(pT ) = min


⇢

pT
, Rmax

�
. (2.7)
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WHAT’S LEFT TO DO?

16

H→bb is the holy grail of jet substructure, where it all 
started … embarrassingly it’s not been observed yet!

Need more efficient tools? 

enter machine learning!



DEEP LEARNING
a wave of machine learning algorithms has hit jet physics in the past 3/4 years

ML algorithms are powerful tools for classification, can we then apply them to our task?

17

if an algorithm can distinguish 
pictures of cats and dogs, can 
it also distinguish QCD jets 
from boosted-objects?

number of papers trying to 
answer this question has 
recently exploded!

very active and fast-developing 
field
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Figure 6: Left: ROC curves for individual physics-motivated features as well as three deep neural
network discriminants. Right: the DNNs are compared with pairwise combinations of the physics-
motivated features.
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Figure 7: ROC curves that combined the DNN outputs with physics motivated features for the
Convnet (left) and MaxOut (right) architectures.
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JETS AS IMAGES
jet images do what they say: project the jet into a nxn pixel image, where intensity is given by 
energy deposition

use convolutional neural network (CNN) to classify 

right pre-processing is crucial for many reasons: we average over many events and Lorentz 
symmetry would wash away any pattern

18
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Even more non-linearity: Going Deep

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image

Convolution Max-Pool Convolution Max-Pool Flatten

Fully  
Connected 
ReLU Unit

ReLU Dropout ReLU Dropout
Local 

Response 
Normalization

W’→ WZ event

Convolutions
Convolved  

Feature Layers

Max-Pooling

Repeat

Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 

Repeat

Apply deep learning techniques on jet images! [3]

convolutional nets are a standard image 
processing technique; also consider maxout

Figure 5: The convolution neural network concept as applied to jet-images.

4.1 Architectural Selection

For the MaxOut architecture, we utilize two FC layers with MaxOut activation (the first with 256
units, the second with 128 units, both of which have 5 piecewise components in the MaxOut-operation),
followed by two FC layers with ReLU activations (the first with 64 units, the second with 25 units),
followed by a FC sigmoid layer for classification. We found that the He-uniform initialization [35]
for the initial MaxOut layer weights was needed in order to train the network, which we suspect is
due to the sparsity of the jet-image input. In cases where other initialization schemes were used, the
networks often converged to very sub optimal solutions. This network is trained (and evaluated) on
un-normalized jet-images using the transverse energy for the pixel intensities

For the deep convolution networks, we use a convolutional architecture consisting of three sequen-
tial [Conv + Max-Pool + Dropout] units, followed by a local response normalization (LRN) layer [8],
followed by two fully connected, dense layers. We note that the convolutional layers used are so called
“full” convolutions – i.e., zero padding is added the the input pre-convolution. Our architecture can
be succinctly written as:

[Dropout ! Conv ! ReLU ! MaxPool] ⇤ 3 ! LRN ! [Dropout ! FC ! ReLU] ! Dropout ! Sigmoid.

(4.1)
The convolution layers each utilize 32 feature maps, or filters, with filter sizes of 11 ⇥ 11, 3 ⇥ 3,

and 3 ⇥ 3 respectively. All convolution layers are regularized with the L
2 weight matrix norm. A

down-sampling of (2, 2), (3, 3), and (3, 3) is performed by the three max pooling layers, respectively.
A dropout [8] of 20% is used before the first FC layer, and a dropout 10% is used before the output
layer. The FC hidden layer consists of 64 units.

After early experiments with the standard 3 ⇥ 3 filter size, we discovered significantly worse
performance over a more basic MaxOut [7] feedforward network. After further investigation into larger
convolutional filter size, we discovered that larger-than-normal filters work well on our application.
Though not common in the Deep Learning community, we hypothesize that this larger filter size is
helpful when dealing with sparse structures in the input images. In Table 1, we compare di↵erent
filter sizes, finding the optimal filter size of 11⇥ 11, when considering the Area Under the ROC Curve
(AUC) metric, based on the ROC curve outlined in Sections 3 and 5.
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is more di↵use for the QCD background which consists largely of gluon jets, which have an octet
radiation pattern, compared to the singlet radiation pattern of the W jets, where the radiation is
mostly restricted to the region between the two hard cores.
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Figure 2: The average jet image for signal W jets (top) and background QCD jets (bottom) before
(left) and after (right) applying the rotation, re-pixelation, and inversion steps of the pre-processing.
The average is taken over images of jets with 240 GeV < pT < 260 GeV and 65 GeV < mass < 95 GeV.

One standard pre-processing step that is often additionally applied in Computer Vision tasks is
normalization. A common normalization scheme is the L

2 norm such that
P

I
2
i = 1 where Ii is the

intensity of pixel i. This is particularly useful for the jet images where pixel intensities can span many
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is more di↵use for the QCD background which consists largely of gluon jets, which have an octet
radiation pattern, compared to the singlet radiation pattern of the W jets, where the radiation is
mostly restricted to the region between the two hard cores.
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Figure 2: The average jet image for signal W jets (top) and background QCD jets (bottom) before
(left) and after (right) applying the rotation, re-pixelation, and inversion steps of the pre-processing.
The average is taken over images of jets with 240 GeV < pT < 260 GeV and 65 GeV < mass < 95 GeV.

One standard pre-processing step that is often additionally applied in Computer Vision tasks is
normalization. A common normalization scheme is the L

2 norm such that
P

I
2
i = 1 where Ii is the

intensity of pixel i. This is particularly useful for the jet images where pixel intensities can span many
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Cogan, Kagan, Strauss, Schwartzman (2015)                       
de Olivera, Kagan, Mackey, Nachman, Schwartzman (2016)



BEYOND IMAGES: 4-MOMENTA
analyses typically have access to more information 
than energy deposit in the calorimeter: e.g. 
particle id, tracks, clustering history in a jet, etc.

build network that take 4-momenta as inputs:

clever N-body phase-space parametrisation to 
maximise information

recurrent / recursive  neural networks to 
model jet clustering history (using techniques 
borrowed from language recognition)

19

Louppe, Cho,  Cranmer (2017)

Datta, Larkoski (2017)

Figure 1

Schematic showing feed-forward, recurrent, and recursive neural network architectures. Diamonds
represent inputs and outputs, while processing units are represented with circles and squares.
Arrows between processing units represent embeddings h. Standard feed-forward networks map a
fixed length x into y, whereas recurrent and recursive networks can process a sequence of inputs
{xi}. Units represented as circles are shared throughout the network: once the network is trained,
the units can be used to build a network of arbitrary size. Recurrent networks can be viewed as a
subset of recursive networks, in which each node combines one input xi and the output from the
previous recurrent node hi�1 to produce hi, and where h0 = 0. Recursive units map each pair of
inputs to an output in the same space, (hi,hj) ! hk. Note that these components can also be
chained: Any output node can also serve as an input node to another component.

chine learning tools can perform hit reconstruction (26) or track finding (27) in individual

detector systems. These tools can also perform object identification by using information

from various detector systems, such as electron (28), photon (29), or ⌧ lepton (30) identi-

fication. Finally, machine learning tools have been widely used to classify entire events as

background-like or signal-like, both in the final statistical analysis (31) or at the initial trig-

ger decision (32). These machine learning tools have found high-profile application in single

t quark searches (33), early Higgs boson searches (34), and the Higgs boson discovery (29).

2.1. Event Selection and High-Level Physics Tasks

The earliest successes of deep learning in high energy physics came in improvements in

event selection for signal events with complex topologies. In the past few years, several

studies have demonstrated that the traditional shallow networks based on physics-inspired

engineered (“high-level”) features are outperformed by deep networks based on the higher-

dimensional features which receive less pre-processing (“lower-level”) features. Prior to the

advent of deep learning, such pre-processing was necessary, as shallow network performance

on low-level features fell short. The deep learning results discussed below demonstrate that

deep networks using the low-level features surpass the shallow networks using high-level

features. This confirms the suspicion that feature engineering, applying physics knowledge

8 Guest • Cranmer • Whiteson

Guest, Cranmer, Whiteson (2018)

Figure 4. Jet classification performance of the RNN classifier based on various network topologies
for the embedding (particles scenario). This plot shows that topology is significant, as supported
by the fact that results for kt, C/A and desc-pT topologies improve over results for anti-kt, asc-pT
and random binary trees. Best results are achieved for C/A and desc-pT topologies, depending on
the metric considered.

saw a significant loss in performance. While the trimming degraded classification perfor-

mance, we did not evaluate the robustness to pileup that motivates trimming and other

jet grooming procedures.

5.2 Infrared and Collinear Safety Studies

In proposing variables to characterize substructure, physicists have been equally concerned

with classification performance and the ability to ensure various theoretical properties

of those variables. In particular, initial work on jet algorithms focused on the Infrared-

Collinear (IRC) safe conditions:

• Infrared safety. The model is robust to augmenting e with additional particles

{vN+1, . . . ,vN+K} with small transverse momentum.

• Collinear safety. The model is robust to a collinear splitting of a particle, which is

represented by replacing a particle vj 2 e with two particles vj1 and vj2 , such that

vj = vj1 + vj2 and vj1 · vj2 = ||vj1 || ||vj2 ||� ✏.

The sequential recombination algorithms lead to an IRC-safe definition of jets, in the

sense that given the event e, the number of jets M and their 4-momenta v(tj) are IRC-safe.

An early motivation of this work is that basing the RNN topology on the sequential

recombination algorithms would provide an avenue to machine learning classifiers with some

– 11 –



DEEP LEARNING MEETS DEEP 
THINKING: LUND JET PLANE

inputs of ML algorithms can be low-level (calorimeter cells/particle 4-momenta) but also 
higher-level variables

physics intuition can lead us to construct better representations of a jet: the Lund jet plane

de-cluster the jet following the hard branch and record (kt, Δ) at each step

feed this representation to a log-likelihood or a ML algorithm

20

Physics intuition meets computer science I: Lund plane

• Standard approach is supervised learning: apply classification algorithms to
large collections of (simulated) samples, e.g. the jet image. [de Oliveira, Kagan, Mackey,

Nachman, Schwartzman (2015)]

• Physics intuition can lead us to construct better representations of a jet: the
Lund plane. [Dreyer, Salam, Soyez (2018)] (see talk in parallel session)Jets as Lund images

Average over declusterings of hardest branch for 2 TeV QCD jets.
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– – – – – – – – –
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Non-perturbative region clearly separated from perturbative one.
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Jets as Lund images

Average over declusterings of hardest branch for 2 TeV QCD jets.
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Non-perturbative region clearly separated from perturbative one.
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Lund images for QCD and W jets

� Hard splittings clearly visible,
along the diagonal line with jet
mass m � mW .

� Depletion of events around W
peak due to shadow cast by
leading emission.

Frédéric Dreyer 10/20

• Decluster the jet following the hard branch and record (kt ,�) at each step

• Use this representation as input of log-likelihood or ML algorithms.

Jet substructure and H/V/top-tagging Danilo Ferreira de Lima and Simone Marzani 52

Dryer, Salam, Soyez (2018)



MAPPING OUT THE LUND PLANE

ATLAS presented at BOOST 2019 the first experimental measurement of the Lund plane 
(note the different coordinates) 

21

ATLAS-CONF-2019-035 

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2019-035/
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ATLAS presented at BOOST 2019 the first experimental measurement of the Lund plane 
(note the different coordinates) 
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ATLAS-CONF-2019-035 

and for the benefit of us theorists they even provided 1-D projections

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2019-035/
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Learned Filters

Figure 10: An illustration of our simultaneous visualization procedure for example EFN

filters. Contours of each filter are shown from 45% to 55% of its maximum value. These

contours are then overlaid on the same figure with di↵erent colors. The resulting contour plot

shows the dynamical pixelization of the plane determined by the model.
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Observable O Map � Function F

Mass m pµ F (xµ) =
p

xµxµ

Multiplicity M 1 F (x) = x

Track Mass mtrack pµItrack F (xµ) =
p

xµxµ

Track Multiplicity Mtrack Itrack F (x) = x

Jet Charge [72] Q (pT , Q p
T ) F (x, y) = y/x

Eventropy [74] z ln z (pT , pT ln pT ) F (x, y) = y/x � ln x

Momentum Dispersion [93] pD
T (pT , p2

T ) F (x, y) =
p

y/x2

C parameter [94] C (|~p |, ~p ⌦ ~p/|~p |) F (x, Y ) = 3
2x2 [(Tr Y )2 � Tr Y 2]

Table 1: A variety of common collider observables decomposed into per-particle maps � and

functions F according to Eq. (1.1). Here Itrack is an indicator function over charged tracks.

In the last column, the arguments of F are placeholders for the summed output of �.

images and radiation moments, and we showcase the extraction of novel analytic observables

from the trained model.

One ever-present collider phenomenon that involves complicated multiparticle final states

is the formation and observation of jets, sprays of color-neutral hadrons resulting from the

fragmentation of high-energy quarks and gluons in quantum chromodynamics (QCD). Numer-

ous individual observables have been proposed to study jets including the jet mass, constituent

multiplicity, image activity [69], N -subjettiness [70, 71], track-based observables [72, 73], gen-

eralized angularities [74], (generalized) energy correlation functions [75, 76], soft drop multi-

plicity [77, 78], and many more (see Refs. [54, 79–83] for reviews). Machine learning methods

have found tremendous applicability to jet classification tasks, greatly outperforming indi-

vidual standard observables. Jet classification provides an ideal case study for the Deep

Sets method in a collider setting since jets, like events, are fundamentally variably sized and

invariant under reorderings of their constituents.

Many existing collider observables ranging from e+e� event shapes to jet substructure

observables naturally fit into the decomposition of Eq. (1.1). Observables that are defined

directly in terms of the particles themselves (i.e. not algorithmically) can often be exactly

encompassed. Several examples of such observables are summarized in Table 1, with the

associated functions � and F listed for each observable. The fact that the decomposition

holds exactly in these familiar cases indicates that the Observable Decomposition indeed

captures an essential aspect of particle-level collider observables.

To showcase the e�cacy of EFNs and PFNs, we apply them to the task of distinguish-

ing light-quark jets from gluon jets [84–87], finding that they achieve excellent classification

performance. In general, the PFN model outperforms the EFN model, indicating that IRC-

unsafe information is helpful for discriminating quark and gluon jets. Additionally, including

particle identification information improves the classification performance of the PFN. It

would be interesting to apply all of these methods in a fully-data driven way [88–90] to test
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EFN : F (
M
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ziΦ(θi, ϕi))
PFN : F (

M

∑
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Φ(pi))
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Particles Observable

Per-Particle Representation Event Representation

Φ

Φ

Φ

F

Energy/Particle Flow Network

Latent Space

Figure 1: A visualization of the decomposition of an observable via Eq. (1.1). Each particle

in the event is mapped by � to an internal (latent) particle representation, shown here as

three abstract illustrations for a latent space of dimension three. The latent representation is

then summed over all particles to arrive at a latent event representation, which is mapped by

F to the value of the observable. For the IRC-safe case of Eq. (1.2), � takes in the angular

information of the particle and the sum is weighted by the particle energies or transverse

momenta.

where this appears is learning from point clouds, sets of data points in space. For instance, the

output of spatial sensors such as lidar, relevant for self-driving car technologies, is often in the

form of a point cloud. As point clouds share the variable-length and permutation-symmetric

properties with collider events, it is worthwhile to understand and expand upon point cloud

techniques for particle physics applications.

The Deep Sets framework for point clouds, recently developed in Ref. [63], demonstrates

how permutation-invariant functions of variable-length inputs can be parametrized in a fully

general way. In Ref. [63], the method was applied to a wide variety of problems including red-

shift estimation of galaxy clusters, finding terms associated with a set of words, and detecting

anomalous faces in a set of images. The key observation is that summation, which is clearly

symmetric with respect to the order of the arguments, is general enough to encapsulate all

symmetric functions if one is allowed a large enough internal (latent) space.

In the context of a physics observable O that is a symmetric function of an arbitrary

– 3 –

Komiske, Metodiev, Thaler (2018)
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Figure 10: An illustration of our simultaneous visualization procedure for example EFN

filters. Contours of each filter are shown from 45% to 55% of its maximum value. These

contours are then overlaid on the same figure with di↵erent colors. The resulting contour plot

shows the dynamical pixelization of the plane determined by the model.
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xµxµ

Multiplicity M 1 F (x) = x

Track Mass mtrack pµItrack F (xµ) =
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xµxµ

Track Multiplicity Mtrack Itrack F (x) = x

Jet Charge [72] Q (pT , Q p
T ) F (x, y) = y/x

Eventropy [74] z ln z (pT , pT ln pT ) F (x, y) = y/x � ln x
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C parameter [94] C (|~p |, ~p ⌦ ~p/|~p |) F (x, Y ) = 3
2x2 [(Tr Y )2 � Tr Y 2]

Table 1: A variety of common collider observables decomposed into per-particle maps � and

functions F according to Eq. (1.1). Here Itrack is an indicator function over charged tracks.

In the last column, the arguments of F are placeholders for the summed output of �.

images and radiation moments, and we showcase the extraction of novel analytic observables

from the trained model.

One ever-present collider phenomenon that involves complicated multiparticle final states

is the formation and observation of jets, sprays of color-neutral hadrons resulting from the

fragmentation of high-energy quarks and gluons in quantum chromodynamics (QCD). Numer-

ous individual observables have been proposed to study jets including the jet mass, constituent

multiplicity, image activity [69], N -subjettiness [70, 71], track-based observables [72, 73], gen-

eralized angularities [74], (generalized) energy correlation functions [75, 76], soft drop multi-

plicity [77, 78], and many more (see Refs. [54, 79–83] for reviews). Machine learning methods

have found tremendous applicability to jet classification tasks, greatly outperforming indi-

vidual standard observables. Jet classification provides an ideal case study for the Deep

Sets method in a collider setting since jets, like events, are fundamentally variably sized and

invariant under reorderings of their constituents.

Many existing collider observables ranging from e+e� event shapes to jet substructure

observables naturally fit into the decomposition of Eq. (1.1). Observables that are defined

directly in terms of the particles themselves (i.e. not algorithmically) can often be exactly

encompassed. Several examples of such observables are summarized in Table 1, with the

associated functions � and F listed for each observable. The fact that the decomposition

holds exactly in these familiar cases indicates that the Observable Decomposition indeed

captures an essential aspect of particle-level collider observables.

To showcase the e�cacy of EFNs and PFNs, we apply them to the task of distinguish-

ing light-quark jets from gluon jets [84–87], finding that they achieve excellent classification

performance. In general, the PFN model outperforms the EFN model, indicating that IRC-

unsafe information is helpful for discriminating quark and gluon jets. Additionally, including

particle identification information improves the classification performance of the PFN. It

would be interesting to apply all of these methods in a fully-data driven way [88–90] to test
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in the event is mapped by � to an internal (latent) particle representation, shown here as

three abstract illustrations for a latent space of dimension three. The latent representation is

then summed over all particles to arrive at a latent event representation, which is mapped by

F to the value of the observable. For the IRC-safe case of Eq. (1.2), � takes in the angular

information of the particle and the sum is weighted by the particle energies or transverse

momenta.

where this appears is learning from point clouds, sets of data points in space. For instance, the

output of spatial sensors such as lidar, relevant for self-driving car technologies, is often in the

form of a point cloud. As point clouds share the variable-length and permutation-symmetric

properties with collider events, it is worthwhile to understand and expand upon point cloud

techniques for particle physics applications.

The Deep Sets framework for point clouds, recently developed in Ref. [63], demonstrates

how permutation-invariant functions of variable-length inputs can be parametrized in a fully

general way. In Ref. [63], the method was applied to a wide variety of problems including red-

shift estimation of galaxy clusters, finding terms associated with a set of words, and detecting

anomalous faces in a set of images. The key observation is that summation, which is clearly

symmetric with respect to the order of the arguments, is general enough to encapsulate all

symmetric functions if one is allowed a large enough internal (latent) space.

In the context of a physics observable O that is a symmetric function of an arbitrary
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Figure 21: A larger scale visualization of the filters for the quark/gluon ` = 256 EFN model,

shown originally in Fig. 11.
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ML SURVEY FOR TOP TAGGING
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AUC Accuracy 1/✏B (✏S = 0.3) #Parameters

CNN [16] 0.981 0.930 780 610k
ResNeXt [32] 0.984 0.936 1140 1.46M

TopoDNN [18] 0.972 0.916 290 59k
Multi-body N -subjettiness 6 [24] 0.979 0.922 856 57k
Multi-body N -subjettiness 8 [24] 0.981 0.929 860 58k
RecNN 0.981 0.929 810 13k
P-CNN 0.980 0.930 760 348k
ParticleNet [45] 0.985 0.938 1280 498k

LBN [19] 0.981 0.931 860 705k
LoLa [22] 0.980 0.929 730 127k
Energy Flow Polynomials [21] 0.980 0.932 380 1k
Energy Flow Network [23] 0.979 0.927 600 82k
Particle Flow Network [23] 0.982 0.932 880 82k

GoaT (see text) 0.985 0.939 1440 25k

Table 1: Single-number performance metrics for all algorithms evaluated on the test sample.
We quote the area under the ROC curve (AUC), the accuracy, and the background rejection
at a signal e�ciency of 30%. The number of trainable parameters of the model is given as
well. Performance metrics for the GoaT meta-tagger are based on a subset of events.

investigate whether their combination into a meta-tagger might improve performance. Note
that this GoaT (Greatest of all Taggers) meta-tagger should not be viewed as a potential
analysis tool, but rather as a benchmark of how much unused information is available in cor-
relations that could be captured by a future approach. It is implemented as a fully connected
network with 5 layers containing 100-100-100-20-2 nodes. All activation functions are ReLu,
apart from the final layer where we use SoftMax. Training is performed with the Adam [42] op-
timizer with an initial learning rate of 0.001 and binary cross-entropy loss. We train for up to
50 epochs, but terminate if there is no improvement in the validation loss for two consecutive
epochs, so a typical training ends after 5 epochs. The training data is provided by individual
tagger output on the previous test sample and split intro three subsets: GoaT-training (160k
events), GoaT-testing (160k events) and GoaT-validation (80k events). Training/testing is
repeated ten times and for each repetition the events are randomly re-shu✏ed between the
three di↵erent subsets. In Tab. 1 we see that this combination of algorithms improves the best
individual tagger by more than 10% in the background rejection. We consider this number a
realistic estimate of the kind of improvement we can still expect for deep-learning top quark
identification.

In spite of the fact that our study gives some definite answers concerning deep learning
for simple jet classification at the LHC, a few questions remain open: first, we use jets in
a relatively narrow and specific pT -slice. Future e↵orts could explore softer jets, where the
decay products are not necessarily inside one fat jet; higher pT , where detector resolution
e↵ects become crucial; and wider pT windows, where stability of taggers becomes relevant.
The samples also use a simple detector simulation and do not contain e↵ects from underlying
event and pile-up.
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images

four-
momenta

theory-
inspired

EW-scale particles get a boost

• Standard analysis: the heavy particle X decays into two partons, reconstructed
as two jets.

• Search strategy: look for bumps in the dijet invariant mass distribution.

• What about EW-scale particles at the LHC?

Flavor

Low boost:
unmerged decay products
→ top decay products 
resolved as 3 R=0.4 jets

Medium boost:
Partial merging of decay prod.
->Reconstruct a W and a b

Large boost: 
Top products merged

ΔR~2M/pT Mj~Mt
Boost (pT [jet]) Substructure

(Figure by L. Gouskos)

• Ec.o.m. � mEW, hence they are abundantly produced with a large boost.

• Their decay-products are then collimated and, if they decay into hadrons, we
end up with localised deposition of energy in the hadronic calorimeter: a jet.

Jet substructure and H/V/top-tagging Danilo Ferreira de Lima and Simone Marzani 4

all solutions offer big improvement over 
standard analysis (nsub+m)

similar performances

physics intuition useful to match performance 
of highly-sophisticated architectures

SciPost Physics Submission

Figure 5: ROC curves for all algorithms evaluated on the same test sample, shown as the
median of multiple trainings.

similar information should be included in the ROC curve. For the background rejection we
see a sizeable variation from around 1/600 to better than 1/1000. Again, the cutting edge
ResNeXt50 and ParticleNet approaches lead to the best results, corresponding to an improve-
ment of the signal-to-background ratio by a factor ✏S/✏B > 300, and vastly exceeding the
current top tagging performance in ATLAS and CMS.

On the other hand, in Fig. 5 and Tab. 1 we see that some of the physics-motivated setups
remain competitive with the technically much more advanced ResNeXt50 and ParticleNet
networks. This suggests that even for a straightforward task like top tagging in fat jets we
can develop competitive and e�cient physics-specific tools. While their performance does not
quite match the state of the art standard networks, it is close enough to test both approaches
on key requirements in particle physics, like treatment of uncertainties, stability with respect
to detector e↵ects, etc.

The obvious question in any deep-learning analysis is if the tagger captures all relevant
information. As a starting point we can test how correlated the classifier output of the di↵erent
taggers are. We show the pair-wise correlations for a subset of classifier outputs in Fig. 6, with
the correlation matrix given in Tab. 2. As expected from strong classifier performances, most
jets are clustered in the bottom left and top right corners, corresponding to identification as
background and signal, respectively. The largest spread is observed for correlations with the
EFP. The two strongest individual classifier outputs — ResNeXt50 and ParticleNet — are
not perfectly correlated.

Given that we find the outputs of the di↵erent algorithms not to be fully correlated, we can
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TOWARDS UNDERSTANDING
ML techniques do bring significant improvement but also many questions

Theory community (within and outside jet physics) reacted in different ways

Recently first attempts to “open the black box” have appeared

Calculable (IRC safe) input allows for (some) first-principle understanding 
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Figure 16: The ROC curves for neural networks combining N -subjettiness observables with

� = 1, together with the predictions for their asymptotic behavior in the high quark e�ciency

region based on g = (CF /CA)N . The classification performance increases as N -subjettiness

observables are added, saturating at the performance of using 15-body phase space. The

asymptotic classification performance is qualitatively well described by the analytical esti-

mates via reducibility factors for N -emission sensitive observables.

semi-quantitative understanding of neural network performance in high dimensions.

10 Conclusions

The identification of the initiating particle of a jet and the discrimination of jets of di↵erent

origins are central problems in the analysis of events at the LHC. Due both to the importance

of the problem and the abundance of data from the LHC, machine learning with DNNs, for

example, has seen extensive use. However, in most studies, the inputs to the DNN are low-

level information such as individual particle four-momenta and so the dimensionality of the

input can be tens or hundreds of numbers. This enormous dimension is di�cult to quantify

and requires reliance on the DNN to tease out the important features. Further, studies thus

far have used simulation to train the models, which is not reality, and this risks learning the

idiosyncrasies of the simulation, and not real physics. Recent ideas for training directly on the

data [74–77] are closely related to the notions of power counting and parametric discrimination

power developed here [16, 17]. More generally, in order to trust the output of the model and
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“a first step in a theoretical effort to deconstruct machine 
learning for particle physics"

TOWARDS UNDERSTANDING
ML techniques do bring significant improvement but also many questions

Theory community (within and outside jet physics) reacted in different ways

Recently first attempts to “open the black box” have appeared

Calculable (IRC safe) input allows for (some) first-principle understanding 
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Figure 16: The ROC curves for neural networks combining N -subjettiness observables with

� = 1, together with the predictions for their asymptotic behavior in the high quark e�ciency

region based on g = (CF /CA)N . The classification performance increases as N -subjettiness

observables are added, saturating at the performance of using 15-body phase space. The

asymptotic classification performance is qualitatively well described by the analytical esti-

mates via reducibility factors for N -emission sensitive observables.

semi-quantitative understanding of neural network performance in high dimensions.
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CONCLUSIONS & OUTLOOK
Over the past 10 years, jet substructure has become a mainstream tool for LHC phenomenology

In this talk I’ve concentrated on Hbb. Are traditional tools/approach sufficient or do we need to 
resort to ML?

In the context of ML, are we suspicious of black-boxes? Should we?

can we move from machine-learning to learning-from-machines? Interpretable neural 
networks? Prescriptive analytics? 

can we devise ML learning algorithms that preserve calculability? (jet topics, grooming through 
reinforcement learning …)

What’s the best use of first-principle knowledge in jet physics? (see back-up)

extraction of SM parameters? PDFs with q/g tagging? 

jet substructure probes of quark-gluon plasma in heavy ion collisions
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(there are links to things I hadn’t time to discuss)

http://inspirehep.net/record/1727968
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https://indico.cern.ch/event/771644/overview
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TOP MASS WITH SOFT-DROP JETS
determination of fundamental parameters may benefit from grooming, e.g. the top quark mass

in the context of e+e- collisions SCET factorisation theorems allow for a precision-
determination of the top-jet mass

the picture at pp collisions is polluted by wide-angle soft radiation

grooming “turns” pp observables into e+e-  ones

27

QCD@LHC Workshop, Dresden, August 27-31, 2018 

Factorization for Boosted Top Quarks 

Observable: Thrust in e+e-  (2-Jettiness "2) 

⌧ = 1�max~n

P
i |~n · ~pi|

Q
⌧!0⇡ M2

1 + M2
2

Q2

Fat jet invariant mass distribution in the resonance region ! 

 
•  Insensitive to top quark decay  
•  Can be extended to LHC (event shapes, fat jet masses) 
•  Can be extended to account for grooming effects (soft drop) QCD@LHC Workshop, Dresden, August 27-31, 2018 

Extension to pp Collisions 
AH, Mantry, Pathak, Stewart; arXive:1708.02586 

Hadronization + MPI:      MC mass and MSR mass compatible 

Result very encouraging:  

Realistic full hadron level jet mass distributions for boosted top quarks. 

“Light grooming” restriction may be lifted.  → separation of ultra-collinear modes 

Hoang, Mantry, Pathak, Stewart (2017)



MEASURING THE STRONG 
COUPLING

current precision below 1%, dominated by lattice extractions

LEP event shapes also very precise (5%)

 however they are in tension with the world average 

thrust (and C parameter) known with outstanding accuracy 
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Figure 9.2: Summary of determinations of αs(M2
Z) from the six sub-fields

discussed in the text. The yellow (light shaded) bands and dashed lines indicate the
pre-average values of each sub-field. The dotted line and grey (dark shaded) band
represent the final world average value of αs(M2

Z).

whereby the dominating contributions to the overall error are experimental (+0.0017
−0.0018), from

parton density functions (+0.0013
−0.0011) and the value of the top quark pole mass (±0.0013).

February 10, 2016 16:30
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FIG. 13: Thrust distribution at N3LL′ order and Q = mZ

including QED and mb corrections using the best fit values
for αs(mZ) and Ω1 in the R-gap scheme given in Eq. (68). The
pink band represents the perturbative error determined from
the scan method described in Sec. VI. Data from DELPHI,
ALEPH, OPAL, L3, and SLD are also shown.

αs(mZ) is ±0.0009 compared to ±0.0021 with Ω̄1 in the
MS scheme. Also at NNLL′ and N3LL we see that the
removal of the O(ΛQCD) renormalon leads to a reduction
of the theoretical uncertainties by about a factor of two
in comparison to the results with Ω̄1 in the MS scheme
without renormalon subtraction. The proper treatment
of the renormalon subtraction is thus a substantial part
of a high-precision analysis for Ω1 as well as for αs.

It is instructive to analyze the minimal χ2 values for
the best fit points shown in Fig. 11. In Fig. 12 the dis-
tributions of the best fits in the αs-χ2

min/dof plane are
shown using the color scheme of Fig. 11. Figure 12a dis-
plays the results in R-gap scheme, and Fig. 12b the ones
in the MS scheme. For both schemes we find that the
χ2
min values and the size of the covered area in the αs-

χ2
min/dof plane systematically decrease with increasing

order. While the analysis in the MS scheme for Ω̄1 leads
to χ2

min/dof values around unity and thus an adequate
description of the entire global data set at N3LL′ order,
we see that accounting for the renormalon subtraction in
the R-gap scheme leads to a substantially improved the-
oretical description having χ2

min/dof values below unity
already at NNLL′ and N3LL orders, with the N3LL′ or-
der result slightly lower at χ2

min/dof ≃ 0.91. This demon-
strates the excellent description of the experimental data
contained in our global data set. It also validates the
smaller theoretical uncertainties we obtain for αs and Ω1

at N3LL′ order in the R-gap scheme.

As an illustration of the accuracy of the fit, in Fig. 13
we show the theory thrust distributions at Q = mZ for
the full N3LL′ order with the R-gap scheme for Ω1, for
the default theory parameters and the corresponding best
fit values shown in bold in Tabs. IV and V. The pink

Band Band Our scan
method 1 method 2 method

N3LL′ with ΩRgap
1 0.0004 0.0008 0.0009

N3LL′ with Ω̄MS
1 0.0016 0.0019 0.0021

N3LL′ without Smod
τ 0.0018 0.0021 0.0034

O(α3
s) fixed-order 0.0018 0.0026 0.0046

TABLE VI: Theoretical uncertainties for αs(mZ) obtained at
N3LL′ order from two versions of the error band method, and
from our theory scan method. The uncertainties in the R-gap
scheme (first line) include renormalon subtractions, while the
ones in the MS scheme (second line) do not and are therefore
larger. The same uncertainties are obtained in the analysis
without nonperturbative function (third line). Larger uncer-
tainties are obtained from a pure O(α3

s) fixed-order analysis
(lowest line). Our theory scan method is more conservative
than the error band method.

band displays the theoretical uncertainty from the scan
method. The fit result is shown in comparison with data
from DELPHI, ALEPH, OPAL, L3, and SLD, and agrees
very well. (Note that the theory values displayed are
actually binned according to the ALEPH data set and
then joined by a smooth interpolation.)

Band Method

It is useful to compare our scan method to determine the
perturbative errors with the error band method [26] that
was employed in the analyses of Refs. [20, 22, 25]. In the
error band method first each theory parameter is varied
separately in the respective ranges specified in Tab. III
while the rest are kept fixed at their default values. The
resulting envelope of all these separate variations with
the fit parameters αs(mZ) and Ω1 held at their best fit
values determines the error bands for the thrust distri-
bution at the different Q values. Then, the perturbative
error is determined by varying αs(mZ) keeping all the-
ory parameters to their default values and the value of
the moment Ω1 to its best fit value. The resulting per-
turbative errors of αs(mZ) for our full N3LL′ analysis in
the R-gap scheme are given in the first line of Tab. VI.
In the second line the corresponding errors for αs(mZ)
in the MS scheme for Ω̄1 are displayed. The left column
gives the error when the band method is applied such
that the αs(mZ) variation leads to curves strictly inside
the error bands for all Q values. For this method it turns
out that the band for the highest Q value is the most
restrictive and sets the size of the error. The resulting
error for the N3LL′ analysis in the R-gap scheme is more
than a factor of two smaller than the error obtained from
our theory scan method, which is shown in the right col-
umn. Since the high Q data has a much lower statistical
weight than the data from Q = mZ , we do not consider
this method to be sufficiently conservative and conclude
that it should not be used. The middle column gives the
perturbative error when the band method is applied such
that the αs(mZ) variation minimizes a χ2 function which
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FIG. 17: The smaller elongated ellipses show the experimental
39% CL error (1-sigma for αs) and best fit points for different
global data sets at N3LL′ order in the R-gap scheme and
including bottom quark mass and QED effects. The default
theory parameters given in Tab. III are employed. The larger
ellipses show the combined theoretical plus experimental error
for our default data set with 39% CL (solid, 1-sigma for one
dimension) and 68% CL (dashed).

experimental error ellipses, hence to larger uncertainties.
It is an interesting but expected outcome of the fits

that the pure experimental error for αs (the uncertainty
of αs for fixed central Ω1) depends fairly weakly on the
τ range and the size of the global data sets shown in
Fig. 17. If we had a perfect theory description then we
would expect that the centers and the sizes of the error
ellipses would be statistically compatible. Here this is
not the case, and one should interpret the spread of the
ellipses shown in Fig. 17 as being related to the theo-
retical uncertainty contained in our N3LL′ order predic-
tions. In Fig. 17 we have also displayed the combined
(experimental and theoretical) 39% CL standard error
ellipse from our default global data set which was al-
ready shown in Fig. 11a (and is 1-sigma, 68% CL, for
either one dimensional projection). We also show the
68% CL error ellipse by a dashed red line, which corre-
sponds to 1-sigma knowledge for both parameters. As
we have shown above, the error in both the dashed and
solid larger ellipses is dominated by the theory scan un-
certainties, see Eqs. (68). The spread of the error ellipses
from the different global data sets is compatible with the
1-sigma interpretation of our theoretical error estimate,
and hence is already represented in our final results.

Analysis without Power Corrections

Using the simple assumption that the thrust distribution
in the tail region is proportional to αs and that the main

αs(mZ)±(pert. error) χ2/(dof)

N3LL′ with ΩRgap
1 0.1135 ± 0.0009 0.91

N3LL′ with Ω̄MS
1 0.1146 ± 0.0021 1.00

N3LL′ without Smod
τ 0.1241 ± 0.0034 1.26

O(α3
s) fixed-order

without Smod
τ

0.1295 ± 0.0046 1.12

TABLE VII: Comparison of global fit results for our full anal-
ysis to a fit where the renormalon is not canceled with Ω̄1, a
fit without Smod

τ (meaning without power corrections with
Smod
τ (k) = δ(k)), and a fit at fixed order without power cor-

rections and log resummation. All results include bottom
mass and QED corrections.

effect of power corrections is a shift of the distribution
in τ , we have estimated in Sec. I that a 300MeV power
correction will lead to an extraction of αs from Q = mZ

data that is δαs/αs ≃ (−9 ± 3)% lower than an anal-
ysis without power corrections. In our theory code we
can easily eliminate all nonperturbative effects by set-
ting Smod

τ (k) = δ(k) and ∆̄ = δ = 0. At N3LL′ or-
der and using our scan method to determine the per-
turbative uncertainty a global fit to our default data set
yields αs(mZ) = 0.1241 ± (0.0034)pert which is indeed
9% larger than our main result in Eq. (68) which ac-
counts for nonperturbative effects. It is also interesting
to do the same fit with a purely fixed-order code, which
we can do by setting µS = µJ = µH to eliminate the
summation of logarithms. The corresponding fit yields
αs(mZ) = 0.1295±(0.0046)pert, where the displayed error
has again been determined from the theory scan which in
this case accounts for variations of µH and the numerical
uncertainties associated with ϵ2 and ϵ3. (A comparison
with Ref. [22] is given below in Sec. IX.)
These results have been collected in Tab. VII together

with the αs results of our analyses with power corrections
in the R-gap and the MS schemes. For completeness we
have also displayed the respective χ2/dof values which
were determined by the average of the maximal and the
minimum values obtained in the scan.

VIII. FAR-TAIL AND PEAK PREDICTIONS

The factorization formula (4) can be simultaneously used
in the peak, tail, and far-tail regions. To conclude the
discussion of the numerical results of our global analysis
in the tail region, we use the results obtained from this
tail fit to make predictions in the peak and the far-tail
regions.
In Fig. 18 we compare predictions from our full N3LL′

code in the R-gap scheme (solid red line) to the accurate
ALEPH data at Q = mZ in the far-tail region. As input
for αs(mZ) and Ω1 we use our main result of Eq. (68)
and all other theory parameters are set to their default
values (see Tab. III). We find excellent agreement within
the theoretical uncertainties (pink band). Key features

strong correlation with non-perturbative 
parameter



SOFT-DROP EVENT SHAPES

noticeable reduction of non-pert. corrections may allow to disentangle the degeneracy 

can we compute it at the same accuracy as standard event shapes?

NNLO calculations recently performed 
29

Baron, SM, Theeuwes (2018)

Kardos, Somogyi, Trocsanyi (2018)



αs WITH SOFT-DROP THRUST

fits to pseudo-data generated by SHERPA

results shows reduced dependence on non-pert. 
corrections

subleading effects are under investigation

soft-drop allows us to extend the 
fit range

Generale question: is there a 
natural way to define soft-drop 
event shapes? e.g. bottom-up soft-
drop

SM, Reichelt, Schumann, Soyez, and Theeuwes (2019) 

Dreyer, Necib, Soyez, Thaler (2018)
Baron (in preparation)
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