Parton showers and Resummation

- jet resolutions as a testbed -

Steffen Schumann

Institut für Theoretische Physik, Universität Göttingen

VCES Vienna

29/11/19

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Monte Carlo Event Generators – work horses

Stochastic simulation of fully exclusive collision events

[Buckley et al. Phys. Rept. 504 (2011) 145]

- \hookrightarrow factorize short- & long range physics
 - perturbative phases
 - Hard interaction

exact matrix elements $|\mathcal{M}|^2$ LO,NLO,NNLO – QCD, NLO – EW

Radiativ corrections

parton showers in the initial and final state resummation of soft-collinear logs: LL, NLL

- non-perturbative phases
 - Hadronization

parton-hadron transition

- Hadron Decays phase space or effective theories
- Underlying Event
 beyond factorization: modelling

- general purpose generators: PYTHIA, HERWIG, SHERPA
- dedicated to matching/merging: POWHEGBOX, MADGRAPH5-AMC@NLO

Monte Carlo Event Generators - work horses

PYTHIA (latest release 8.243)

- p_T ordered (dipole inspired) parton shower
- automatic shower variations [Mrenna, Skands]
- string fragmentation model
- sophisticated underlying event, non-perturbative models
- VINCIA and DIRE showers as plugins

HERWIG (latest release 7.1.5)

- angular-ordered and CS dipole shower
- interfaces to ME generators
- on-the-fly uncertainty variations [Bellm et al.]
- cluster hadronization model
- generic matching/merging implementations
- underlying event & soft interactions

イロト 不得下 イヨト イヨト 三日

The SHERPA 2.2 event generator framework

User Inputs	Matrix Elements	Parton Showers	Soft Physics	Interfaces/Outputs
Initial Beams • collider setup • PDFs (built-in, LHAPDF) • beam spectra	Matrix Element Generators • AMEGIC • COMIX • CS subtraction	CS-Shower (default) • dipole shower • fully massive • QED splittings DIPE	Hadronisation • AHADIC: a cluster fragmentation model • interface to Pythia string fragmentation	Output Formats • HepMC • LHEF • Root Ntuple
Parameters/Models • FeynRules/UFO • couplings • masses • variations • shower settings • non-perturbative parameters	OpenLoops Recola GoSam BLHA	hybrid dipole-parton shower algorithm fully massive	Hadron Decays	Interfaces • RIVET analyses • C++/Python ME access • MCgrid • integration into ATLAS/CMS
Physics Process	Matching and Merging		 spin correlations YFS QED corrections partonic channels 	API API
Participities order (CODEW) selectors partonic decays partonic decays partonic decays partonic decays matching/merging partonic decays matching/merging partonic decays matching/merging based on truncated showers tree-level and one-loop matrix el and MEPS@NLO approximate electroweak correc NNLO QCD with parton showers selected processes only		yre matching Yers alafix elements: MEPS@LO : corrections wers	Underlying Event • multiple parton interactions • beam-remnant colours • intrinsic transverse momentum	Code/Docu • HepForge • GitLab • online documentation sherpa.hepforge.org gitLab.com/sherpa-team/sherpa

Status Quo

NLO QCD phenomenology

- NLO QCD + PS matched/merged routinely used in LHC experiments → account for multiple hard emissions, reduced scale uncertainties
- probabilistic simulation of exclusive hadronic final states
 - \hookrightarrow address 'arbitrary' observables with one event sample

< □ > < 同 > < 三

Status Quo

NLO QCD phenomenology

- NLO QCD + PS matched/merged routinely used in LHC experiments
 → account for multiple hard emissions, reduced scale uncertainties
- probabilistic simulation of exclusive hadronic final states
 → address 'arbitrary' observables with one event sample

Some open questions in perturbative parts

- inclusion of (mixed) electroweak corrections in shower simulations
- formal accuracy of showers for specific observables
- quality of approximations, e.g. large- N_c limit, spin averaging
- systematic improvements of shower algorithms
 - \hookrightarrow NLO QCD, (N)NLL resumation, reduced uncertainties

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

Electroweak Physics

- automation of NLO EW corrections [Frederix et al.; Schönherr et al.]
- approximate NLO EW in MEPS@NLO simulations [Kallweit et al.]

QCD Shower Improvements

• new shower-development platforms: DEDUCTOR [Nagy, Soper],

DIRE [Höche, Prestel], HEJ [Andersen et al.], VINCIA [Skands et al.]

- shower logarithmic accuracy [Dreyer et al.; Richardson et al.; Reichelt et al.]
- spin correlations [Richardson et al.]
- resonance-aware subtraction/matching [Ježo, Nason; Liebschner et al.]
- beyond leading color
 - $N_C = 3$ corrections for real emissions [Plätzer et al.; Isaacson, Prestel]
 - evolution beyond LC+ with DEDUCTOR [Nagy, Soper]
 - amplitude-based evolution [Forshaw, Plätzer et al.]
 - perturbative color reconnection [Bellm; Gieseke et al.]
- higher-order corrections [Höche et al., Dulat et al.]

spin-offs

• frameworks for automated resummation [Becher et al.; Reichelt et al.]

Pushing Frontiers

Shower improvements

$$|\mathcal{M}_{n+1}|^2 pprox \sum_{i,j,k
eq i,j} rac{1}{2p_i \cdot p_j} \langle \mathcal{M}_n | rac{\mathbf{T}_{ij} \cdot \mathbf{T}_k}{\mathbf{T}_{ij}^2} \mathbf{V}_{ij,k} | \mathcal{M}_n
angle$$

conventional shower: average spins, ' $N_C \to \infty$ '

- $\hookrightarrow \mathsf{preserve} \ \mathsf{spin} \ \mathsf{correlations}$
- \hookrightarrow N_C = 3 corrections
- $\hookrightarrow \mathsf{higher}\mathsf{-order} \mathsf{ splitting} \mathsf{ functions}$
- \hookrightarrow NLL resummation for multi-jet resolutions

Jet resolutions as a testbed

consider jet-resolution scales in k_T algorithm

$$y_{ij} = rac{2\min(E_i^2,E_j^2)}{Q^2}(1-\cos heta_{ij})$$

- differential probe of pQCD jet production: $y_{n,n+1}$ resolutions \hookrightarrow sensitive to non-perturbative corrections
- measured by LEP experiments, hadron-collider equivalents at LHC
- used for α_s extractions, benchmark for parton showers, MC tuning, ...

Pushing Frontiers: Spin Correlations in the Parton Shower

Spin-density formalism in HERWIG showers (angular and dipole)

[Richardson, Webster: arXiv:1807.01955 [hep-ph]]

helicity amplitudes for branchings

(i) azimuthal correlations in parton splittings

$$\frac{1}{2\pi}\left(1+AB\cos 2\Delta\phi\right)$$

(ii) correlations between shower, hard process and decays

$$\begin{array}{lll} & \stackrel{\lambda_{g_1}\lambda'_{g_1}}{\rho_{g_1}} & \propto & \mathcal{M}_{h^0 \to gg}^{\lambda_{g_1}\lambda_{g_2}} \mathcal{M}^* {}^{\lambda'_{g_1}\lambda_{g_2}}_{h^0 \to gg} \\ & f(\phi) & \propto & \stackrel{\lambda_{g_1}\lambda'_{g_1}}{\rho_{g_1}} \mathcal{M}_{g \to q\bar{q}}^{\lambda_{g_1}\lambda_{q}\lambda_{\bar{q}}} \mathcal{M}_{g \to q\bar{q}}^{*\lambda'_{g_1}\lambda_{q}\lambda_{\bar{q}}} \end{array}$$

- → improved description of spin-correlated decays
- \hookrightarrow available from HERWIG 7.2

=S
$$q
ightarrow qg_1$$
 with $g_1
ightarrow gg$

A (1) < A</p>

Pushing Frontiers: Spin Correlations in the Parton Shower

Spin-density formalism in HERWIG showers (angular and dipole)

[Richardson, Webster: arXiv:1807.01955 [hep-ph]]

helicity amplitudes for branchings

(i) azimuthal correlations in parton splittings

$$\frac{1}{2\pi}\left(1+AB\cos 2\Delta\phi\right)$$

(ii) correlations between shower, hard process and decays

- \hookrightarrow improved description of spin-correlated decays
- \hookrightarrow available from HERWIG 7.2

$$h^0 \stackrel{\mathsf{ME}}{
ightarrow} g_1 g_2 \stackrel{\mathsf{PS}}{
ightarrow} q ar{q} q' ar{q}'$$

Pushing Frontiers: $N_C = 3$ corrections

Color matrix element corrections

[Plätzer, Sjödahl, Thorén: JHEP 1811 (2018) 009]

color corrections for first few emissions in HERWIG dipole shower

- use trace basis color representation
- color correction weight

$$\omega_{\tilde{i}\tilde{j}\tilde{k}}^{n} = \frac{-1}{T_{\tilde{i}\tilde{j}}^{2}} \frac{\langle \mathcal{M}_{n} | T_{\tilde{i}\tilde{j}} \cdot T_{\tilde{k}} | \mathcal{M}_{n} |}{|\mathcal{M}_{n}|^{2}}$$

- evolve full color structure, LC shower beyond $N_{\rm max}$ emissions
- available for final- and initial state
- \hookrightarrow limited to first few emissions
- \hookrightarrow possibly large weight fluctuations
- $\,\hookrightarrow\,$ rather mild corrections observed

towards full amplitude evolution [Forshaw, Holguin, Plätzer: JHEP 1908 (2019) 145]

・ ロ ト ・ 一戸 ト ・ 日 ト ・

10/19

Pushing Frontiers: $N_C = 3$ corrections

Stochastically sample $N_{\text{C}}=3$ configurations

[Isaacson, Prestel: Phys. Rev. D 99 (2019) no.1, 014021]

full-color (FC) shower based on DIRE

- trace color assignments in *color flow basis*
- sample flows for emissions above $t_{
 m FC}^{
 m cut} > t_0$ according to

 $\langle \mathcal{M}' | t^lpha_k t^eta_{ij} | \mathcal{M}
angle$

- \bullet LC shower below $t_{\rm FC}^{\rm cut} > t_0$
- keep track of large-N_C flow for LC shower and hadronization
- \hookrightarrow possibly large weight fluctuations
- \hookrightarrow lack of kinematic corrections
- \hookrightarrow no virtual color rearrangements

• • • • • • • • • •

Pushing Frontiers: towards NLO precision

Fully differential two-loop soft corrections in dipole showers [Dulat, Höche, Prestel: Phys. Rev. D 98 (2018) no.7, 074013]

correct DIRE emission pattern for NLO soft-gluon radiation

- differential in one-emission phase space
- correction weights for
 - phase-space coverage
 - spin correlations
 - subleading color
- final- and initial state emissions
- two independent implementations PYTHIA and SHERPA
- \hookrightarrow good agreement with CMW
- \hookrightarrow meaningful uncertainty estimate

< - Im >

y34 @ LEP

Pushing Frontiers: automated NLL soft-gluon resummation

The CAESAR formalism for soft-gluon NLL resummation [Banfi, Salam, Zanderighi: JHEP 0503 (2005) 073]

- consider rIRC safe observable $V({\tilde{p}}, k_1, ..., k_n)$, Born limit $V({p}) = 0$
- resummed cummulant distribution for $V \leq v$ $(L \equiv \ln(1/v))$ given by

$$\begin{split} \Sigma_{\mathcal{H}}(v) &= \sum_{\delta} \int d\mathcal{B} \frac{d\sigma_{\delta}}{d\mathcal{B}} f_{\delta,\mathcal{B}}(v) \mathcal{H}(\{p\}) \\ &\sim (1+C(\alpha_{s})) \exp\left(Lg_{1}^{(\delta)}(\alpha_{s}L) + g_{2}^{(\delta,\mathcal{B})}(\alpha_{s}L) + \dots\right) \\ f_{\delta,\mathcal{B}}(v) &\sim \exp\left(-\sum_{l} R_{l}^{(\delta,\mathcal{B})}(v)\right) \mathcal{S}^{(\delta,\mathcal{B})} \mathcal{F}^{(\delta,\mathcal{B})} \end{split}$$

 $\begin{array}{l} \hookrightarrow \mathcal{F}: \text{ accounts for correlated/multiple emissions (observable specific)} \\ \hookrightarrow \mathcal{S}: \text{ accounts for soft wide-angle emissions} \end{array}$

largely automated for multi-leg processes in SHERPA framework
 [Gerwick, Höche, Marzani, S.: JHEP 1502 (2015) 106]

NLO+NLL accurate predictions for multi-jet resolution scales [Baberuxki, Preuss, S., Reichelt: to appear]

- employ CAESAR implementation in SHERPA framework
 - \hookrightarrow colour-decomposed matrix elements and colour insertions for ${\mathcal S}$
 - $\hookrightarrow \mathsf{numerical} \text{ evaluation of multiple-emission function } \mathcal{F}$
- consider jet production in e^+e^- annihilation at $\sqrt{s}=$ 91.2 GeV
 - \hookrightarrow NLO+NLL predictions for 3–, 4–, 5–, 6–jet resolutions NEW
 - \hookrightarrow emissions off 2, 3, 4, 5 hard legs with $y_{\rm cut}{=}0.02$, respectively
- resummation scale given by last hard splitting, i.e. for $y_{n,n+1}$

$$\mu_Q^2 = y_{n-1,n}Q^2$$

• renormalisation scale according to CKKW, i.e. for $y_{n,n+1}$ this yields

$$\alpha_s^{n-2}(\mu_R^2) = \alpha_s(y_{23}Q^2) \dots \alpha_s(y_{n-1,n}Q^2)$$

validation of soft-function $\ensuremath{\mathcal{S}}$

• consider ratio of soft-eikonal approx. to exact real-emission matrix element

$$R_{s} = \frac{Tr[\Gamma c_{n}H_{n}]}{Tr[c_{n+1}H_{n+1}]} \quad (\text{Born process in trace-basis } \{|b_{\alpha}\rangle\})$$

$$\Gamma = 2\pi^{2}\sum_{i} \frac{P_{i} \cdot P_{j}}{\sum_{i} \sum_{j} (h_{i} + T_{i} T_{i} + h_{i})e^{\alpha\beta}}$$

$$\Gamma = -2g_s^2 \sum_{i < j} \frac{1}{(p_i \cdot k_s)(p_j \cdot k_s)} \sum_{\alpha, \beta} \langle b_\alpha | \mathbf{T}_i \mathbf{T}_j | b_\beta \rangle c^{\alpha \beta}$$

• ratio should approach 1 for soft-gluon emission, probes colour correlators \hookrightarrow consider 100 random non-collinear phase-space points $\{p_{n+1}\}$ \hookrightarrow one gluon to become soft, i.e. $k_s \mapsto \lambda_s k_s$ with $\lambda_s \to 0$

patching-up hard emissions: matching to NLO matrix elements

- use log-R matching scheme [Catani et al. Nucl. Phys. B **407** (1993) 3] (endpoints at respective $y_{n-1,n}$)
- NLO QCD matrix elements from OPENLOOPS, RECOLA
- uncertainties shown cover μ_Q variations only

impact of subleading colors

- strict leading color (LC) only, i.e. $N_c \rightarrow \infty$, $\alpha_s/N_c = \text{const.}$
- shower-like improved LC scheme (Imp. LC)

e.g. $g \rightarrow q\bar{q}$, C_F for quark legs, $n_f = 5$ in α_s running

comparison to Monte Carlo predictions

- SHERPA MEPS@NLO simulation:
 - \hookrightarrow NLO QCD matrix elements for $e^+e^- o 2,3,4,5$ jets
 - \hookrightarrow matched to Catani–Seymour dipole shower [S., Krauss: JHEP 0803 (2008) 038]

Conclusions/Outlook

Monte Carlo generators workhorses for LHC physics

- NLO QCD pheno, including parton showers and non-perturbative models
- automated NLO QCD/EW subtractions, full SM NLO calculations

Lots of recent shower developments

- sophisticated matching/merging with exact QCD/EW matrix elements
- focus moving towards improvements of shower algorithms
 - uncertainty evaluations
 - approximate NLO EW contributions
 - subleading colour
 - spin correlations
 - NLO QCD splitting functions

Towards automation of NLL resummation for multi-jet final states

- \bullet implementation of CAESAR formalism in SHERPA framework
 - \hookrightarrow application to jet resolutions in $e^+e^- \to$ jets
 - \hookrightarrow allows for tuned comparison to parton showers
 - \hookrightarrow generalisation to hadronic initial states

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで