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Infrared singularities
Scattering amplitudes in theories with massless 
particles, such as QED or QCD suffer from 
infrared divergences. 

A nuisance for cross section calculations.  

• Regularize scattering amplitudes and 
phase-space integrals. 

• Isolate and cancel divergences before 
obtaining numerical predictions.
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Bloch, Nordsieck 1937 
Kinoshita 1962; Lee, Nauenberg 1964

→ talks by Sandro Uccirati and Zoltan Trocsanyi



Example: form factor integral

Use dimensional regularization d=4-2ε 
• Two divergent integrations: energy and angle. Soft 

and collinear divergences. 
• Massive case: only single, soft divergence.
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Method of regions for the Sudakov form factor 15
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Fig. 3.1 One-loop contribution to the Sudakov form factor.

with n2 = n̄2 = 0 and n · n̄ = 2. Using these light-cone vectors any four vector can be
decomposed in the form

pµ = n · p
n̄µ

2
+ n̄ · p

nµ

2
+ pµ⊥

= pµ+ + pµ− + pµ⊥ . (3.5)

The quantities (n · p, n̄ · p, pµ⊥) are the light-cone components of the vector and we
will now discuss how these components scale. To do so, it is useful to define a small
expansion parameter

λ2 ∼ P 2/Q2 ∼ L2/Q2 ≪ 1 . (3.6)

Note that
p2 = n · p n̄ · p+ p2⊥ . (3.7)

and due to p2 ∼ λ2Q2 and pµ = pµ− +O(λ) = Q/2nµ +O(λ) the components of the
external momenta must scale as

(n · p, n̄ · p, pµ⊥)

pµ ∼ ( λ2 , 1 , λ ) Q ,

lµ ∼ ( 1 , λ2 , λ ) Q . (3.8)

In our context the term scaling as λa means that the given quantity approaches the
limit λ→ 0 as the a-th power of the expansion parameter λ.

We now perform the region expansion of our integral after assigning different scal-
ings to the loop momentum kµ and expanding the integrand in each region, proceeding
exactly as outlined at the end of Section 2.2. The following scalings yield nonzero con-
tributions

(n · k, n̄ · k, kµ⊥ )

hard (h) ( 1 , 1 , 1 ) Q ,

collinear to pµ (c) ( λ2 , 1 , λ ) Q ,

collinear to lµ (c̄) ( 1 , λ2 , λ ) Q ,

soft (s) ( λ2 , λ2 , λ2) Q .

(3.9)

For brevity, we will refer to the momenta which are collinear to pµ simply as collinear
and to the ones collinear to lµ anti-collinear. All other scaling choices (λa,λb,λc) for

Q2 = (p� l)2
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The vector current in SCET 27

= αs

4π C̃
(1)
V (Q2) +

+ +

Fig. 3.2 One-loop contributions to the Sudakov form factor in QCD and in SCET. In ad-

dition to the diagrams shown, there are external leg corrections which we suppress. The

Feynman rules for gluons emitted from the current are obtained after expanding the Wilson
lines which are part of the collinear building blocks (3.60) in powers of the gauge coupling.

Section 3.1, except for the fact that we left out the numerators of the diagrams in the
region computation. What remains the same is the fact that each contribution involves
a different momentum scale. Setting the low-energy scales P 2 and L2 to zero, both
the soft and the collinear loop integrals become scaleless. In this case, the full-theory
result becomes equal to the contribution of the hard region and on the effective-theory
side only the one-loop correction to the Wilson coefficient remains. The most effi-
cient way to extract the Wilson coefficient is thus to compute the on-shell form factor
P 2 = L2 = 0. Performing the on-shell computation, one obtains

C̃bare
V (ε, Q2) = 1+

αs(µ)

4π
CF

(

−
2

ε2
−

3

ε
+
π2

6
− 8 +O(ε)

)(
Q2

µ2

)−ε

+O
(

α2
s

)

, (3.64)

with color structure tata = CF1 = (N2
c − 1)/(2Nc)1. To get this result, we have

expressed the bare coupling α0
s = g2/(4π) in terms of the MS renormalized coupling

constant αs(µ) via the relation Zα αs(µ)µ2ε = e−εγE (4π)εα0
s, where Zα = 1 +O(αs)

at our accuracy. We have added a label “bare” to the Wilson coefficient to indicate
that we still need to renormalize it, which is done by absorbing the divergences into a
multiplicative Z-factor,

C̃V (Q
2, µ) = lim

ε→0
Z−1

(

ε, Q2, µ
)

C̃bare
V (ε, Q2) . (3.65)

Doing so, leaves us with the finite, renormalized Wilson coefficient

C̃V (Q
2, µ) = 1 +

αs(µ)

4π
CF

(

− ln2
Q2

µ2
+ 3 ln

Q2

µ2
+
π2

6
− 8

)

+O(α2
s) . (3.66)

In the renormalized coefficient we have taken the limit ε → 0, but it depends on the
renormalization scale µ. The whole procedure is of course the same as renormaliza-
tion in standard quantum field theory, up to the fact that we had to deal with 1/ε2

divergences, which arise because we have both soft and collinear divergences. As a
consequence, the Wilson coefficient contains double logarithms. Due to the presence

F (Q2) = 1+
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p2 = l2 = m2 = 0
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Z(ϵ, {p}, µ) = P exp

[
∫

∞

µ

dµ′

µ′
Γ({p}, µ′)

]

, (10)

S = exp
( α

4π
S(1)

)

T
a
T

a = CF

sij ≡ 2σij pi · pj

Li ≡ ln
µ2

−p2i

Ti

Γ({s}, µ) = Γs({s}, µ) +
n
∑

i=1

Γi
c(Li, µ)1 (11)

βij ≡ ln
(−sij)µ2

(−p2i )(−p2j )
= Li + Lj − ln

µ2

−sij
. (12)

dσ = tr
[

Hn ·
n
∏

i=1

J ⊗ Sn

]

(13)



Two powers of 1/ε per loop. At four loops 

The analytical calculation of the coefficient c2 of the 1/ε2 pole (“cusp 
anomalous dimension”) was finished this week: Henn, Korchemsky 
and Mistlberger 1911.10174. Numerical result Moch, Ruijl, Ueda, 
Vermaseren and Vogt ’18 and many color structures were known 
earlier.

Form factor at 4 loops
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Figure 1. Sample Feynman diagrams contributing to the Fq at four-loop order in the large-

Nc limit. Straight and curly lines denote quarks and gluons, respectively. The external

wavy line represents the photon.

Two-loop corrections to Fq have been computed more than 25 years ago [7–

10]. The first three-loop result has been presented in Ref. [11] and has later been
confirmed in Ref. [12]. Analytic results for the three-loop form factor integrals were
presented in Ref. [13]. In Ref. [14], the results of Ref. [13] have been used to compute

Fq at three loops up to order ϵ2, i.e., transcendental weight eight, as a preparation
for the four-loop calculation.

In this paper we compute the fermionic corrections to Fq in the large-Nc limit,
to the four-loop order. Sample Feynman diagrams which have to be computed for

this purpose are shown in Fig. 1.

Over the last decades, powerful methods for determining loop integrands based

on generalized unitarity have become common. However, form factors are simple
enough that a direct Feynman diagram approach for determining the loop integrand

is perfectly possible. The expression for the integrals contributing to the form factors
is then reduced to a set of so-called master integrals, exploiting integration-by-parts

identities [15]. This requires rather involved computer algebra, and can be achieved
using the latest version of the program FIRE [16–18].

This leaves the evaluation of the master integrals as the main technical difficulty.
In a previous paper [19], three of the present authors proposed a new technique for
computing such integrals. Massless form-factor integrals have a trivial scale de-

pendence, so the powerful method of differential equations [20–24] cannot be used
directly. Rather, one first introduces an auxiliary parameter (corresponding to a sec-

ond off-shell external leg), in which differential equations are set up. The main idea
of [19] is that the boundary value of the differential equations can be fixed trivially

from a value of the new parameter that corresponds to propagator-type integrals.
This boundary value is then related to the original problem via the differential equa-
tions.

This last step is especially easy in the canonical form [24] of the differential

– 2 –

S({β}, ϵ)
∏

i

J(L2
i , ϵ) |M({s}, ϵ⟩ = finite (1)

S({β}, µ)
∏

i

J(L2
i , µ) |M({s}, µ⟩ = finite (2)

∆F (Q2) =

(

αs(µ)

4π

)4
[c8
ϵ8

+
c7
ϵ7

+ . . .
c2
ϵ2

+
c1
ϵ
+ c0

]

(

Q2

µ2

)4ϵ

(3)

|Mn({s}, µ)⟩ = lim
ϵ→0

Z
−1(ϵ, {s}, µ) |Mn(ϵ, {s})⟩ . (4)

Γ({s}, µ) = −Z
−1(ϵ, {s}, µ)

d

d lnµ
Z(ϵ, {s}, µ) . (5)

d

d lnµ
|Mn({s}, µ)⟩ = Γ({s}, µ) |Mn({p}, µ)⟩ , (6)

Z(ϵ, {p}, µ) = P exp

[
∫

∞

µ

dµ′

µ′
Γ({p}, µ′)

]

, (7)

sij ≡ 2σij pi · pj

Li ≡ ln
µ2

−p2i

Ti

Γ({s}, µ) = Γs({s}, µ) +
n
∑

i=1

Γi
c(Li, µ)1 (8)

βij ≡ ln
(−sij)µ2

(−p2i )(−p2j )
= Li + Lj − ln

µ2

−sij
. (9)

Interesting color structures! 

→ higher Casimir invariants.

S({β}, ϵ)
∏

i

J(L2
i , ϵ) |M({s}, ϵ⟩ = finite (1)

S({β}, µ)
∏

i

J(L2
i , µ) |M({s}, µ⟩ = finite (2)

∆F (Q2) =

(

αs(µ)

4π

)4
[c8
ϵ8

+
c7
ϵ7

+ . . .
c2
ϵ2

+
c1
ϵ
+ c0

]

(

Q2

µ2

)4ϵ

(3)

da1...an

R = TrR
(

T
a1 . . .T an

)

+

|Mn({s}, µ)⟩ = lim
ϵ→0

Z
−1(ϵ, {s}, µ) |Mn(ϵ, {s})⟩ . (4)

Γ({s}, µ) = −Z
−1(ϵ, {s}, µ)

d

d lnµ
Z(ϵ, {s}, µ) . (5)

d

d lnµ
|Mn({s}, µ)⟩ = Γ({s}, µ) |Mn({p}, µ)⟩ , (6)

Z(ϵ, {p}, µ) = P exp

[
∫

∞

µ

dµ′

µ′
Γ({p}, µ′)

]

, (7)

sij ≡ 2σij pi · pj

Li ≡ ln
µ2

−p2i

Ti

Γ({s}, µ) = Γs({s}, µ) +
n
∑

i=1

Γi
c(Li, µ)1 (8)

βij ≡ ln
(−sij)µ2

(−p2i )(−p2j )
= Li + Lj − ln

µ2

−sij
. (9)

symm.



Misconception
Conventional thinking is that UV and IR 
divergences are of totally different nature: 

• UV divergences are absorbed into 
renormalization of parameters of theory; 
structure constrained by RG equations 

• IR divergences arise in unphysical 
calculations; cancel between virtual 
corrections and real emissions 

In fact, IR divergences can be mapped onto 
UV divergences of operators in effective field 
theory!

6

IR

UV

�



High-energy perspective: Λ is infrared regulator 

Low-energy perspective: Λ is ultraviolet 
regulator 

• Effective Field Theory (EFT) 
• Renormalization, RG evolution

7

IR

UV
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Physics example: DIS

One-to-one correspondence between UV 
divergences in PDFs and IR-div’s in Hi !

8

p
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F2(x,Q
2) =

X

i

Z 1

x
d⇠Hi(

x

⇠
, Q, µ) fi(⇠, µ)
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PDF  
operator matrix element 
needs renormalization 

e� + p ! e� +X
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Unphysical example: off-shell form factor

• Cancellations of divergences implies remarkable relations 
among H, J and S 

• Factorization can be obtained in Soft-Collinear Effective 
Theory (SCET) 

• Soft function is given by Wilson line matrix element

4.6 Decoupling Transformation 49

the only component surviving in Eq. (4.61) is !?. When applying the decoupling
transformations

"c.x/! Sn .x!/".0/c .x/ ;

" Nc.x/! S Nn .xC/"
.0/
Nc .x/ ; (4.64)

the source term becomes

J #.x/ D
Z
ds
Z
dtCV .s; t/ N".0/c .xCs Nn/ S$n .x!/ S Nn .xC/ !

#
?"

.0/
Nc .xCtn/

D
Z
ds
Z
dtCV .s; t/ N".0/c .xC Cx?Cs Nn/

!S$n .0/ S Nn .0/ !
#
?"

.0/
Nc .x!Cx?Ctn/ C: : : : (4.65)

In the second line, we have used the multipole expansion to drop power-suppressed
dependence on x# " .1; 1; 1=λ/. The scaling follows because x# is conjugate to the
sum of a collinear and an anti-collinear momentum.We see that the soft interactions
do not cancel, and the Sudakov form factor receives low-energy contributions which
describe a long-range interaction between the fast moving ingoing and outgoing
quarks. The situation is summarized in diagrammatic form in Fig. 4.2, where p# "
in#, l# " i Nn#, and the double lines represent the soft Wilson lines.

Do the soft corrections factorize? It depends on the precise meaning that one
attributes to the word factorization. Unfortunately, there are two different definitions
of the word factorization which are employed in this context:

1. Factorization = scale separation. In the source term in Eq. (4.65) the pieces
associated to different scales are separated, so according to this definition the
form factor is factorized.

2. Factorization = no low energy interactions. The two collinear sectors in
Eq. (4.65) interact through soft interactions. The form factor is not factorized
in this sense.

p l

F (Q2, L2, P2)

=

C̃V (Q2)

J (P 2) J (L2)

S(Λ2
s)

+O 2

Fig. 4.2 Diagrammatic representation of the Sudakov form factor in QCD; the diagram illustrates
the separation of the different scales present in the problem. The soft scale isƒ2

s D L2P 2=Q2

becher@itp.unibe.ch

2.2 The Sudakov Problem 17

of R, this overlap contribution is given by scaleless integrals and vanishes in
dimensional regularization. Since both the soft and collinear integrals only depend
on a single scale (P 2 for the collinear integrals,ƒ2

soft for the soft integrals), one is left
with scaleless integrals if one performs any further expansions of the integrands.
Therefore, if the integrands are systematically expanded in the different regions, one
never needs to include zero-bin subtractions in dimensional regularization. If, on the
other hand, higher-power terms are not systematically expanded away, one may end
up with non-zero overlap contributions, which would then need to be subtracted
to avoid double counting. The reader interested in a more detailed discussion of
overlap contributions in loop integrals can consult [5]. Examples in which non-
vanishing zero-bin contributions were encountered in SCET include computations
which involve low-mass jets, defined with a jet-algorithm [6– 8]. In these cases,
the soft and collinear phase-space integrals depend on jet algorithm parameters
and contain several scales. This also complicates resummation: in the presence of
several scales in the individual functions, one can end up with large logarithms
which cannot be resummed by RG evolution. The presence of non-vanishing zero-
bin contributions indicates that a full scale separation has not yet been achieved and
one should then ask the question whether an effective theory can be constructed
which achieves complete scale separation.

One can now sum the results obtained in the different regions to obtain what
was the original goal of the calculation: an analytic expression for the integral in
Eq. (2.22) in the limit in which L2 ! P 2 " Q2 . One finds

Ih D
! .1 C"/
Q2

!
1

"2
C 1

"
ln
"2

Q2
C 1

2
ln2

"2

Q2
# #

2

6
CO.λ/

"

Ic D
! .1 C"/
Q2

!
# 1
"2
# 1
"
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: (2.44)

The final result does not depend on the dimensional regulator " and the reader is
invited to check that it coincides with the one that would be obtained by evaluating
directly the integral in Eq. (2.22) and then expanding the result in the λ ! 0 limit.
We stress the fact that the infrared divergences found in the hard region cancel
out against the ultraviolet divergences found in the sum of the soft and collinear
contributions. This feature is general and requires a nontrivial interplay of the

becher@itp.unibe.ch

⇤2
s =

P 2L2

Q2
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*

* result is for scalar loop integral instead of form factor 



Soft-collinear factorization: n jet case

Jet functions Ji = Ji (pi2)
10

H

J J

J J

Hard function H depends on 
large momentum transfers sij 
between jets

S

Soft function S depends 

on scales 

Sen 1983; Kidonakis, Oderda, Sterman 1998

⇤2
ij =

p2i p
2
j

sij
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Factorization
Off-shell Green’s function factorize as 

  

Soft function S and on-shell amplitude M 
depend on colors of all particles!

11

S({β}, ϵ)
∏

i

J(L2

i , ϵ) |M({s}, ϵ⟩ = finite (1)

sij ≡ 2σij pi · pj + i0

Ti

Γ({s}, µ) = Γs({s}, µ) +
n∑

i=1

Γi
c(Li, µ)1 (2)

βij = ln
(−sij)µ2

(−p2i − i0)(−p2j − i0)
= Li + Lj − ln

µ2

−sij
. (3)

S({β}, ϵ)
∏

i

J(L2

i , ϵ) |M({s}, ϵ⟩ = finite (1)

sij ≡ 2σij pi · pj

Li ≡ ln
µ2

p2i

Ti

Γ({s}, µ) = Γs({s}, µ) +
n∑

i=1

Γi
c(Li, µ)1 (2)

βij = ln
(−sij)µ2

(−p2i )(−p2j )
= Li + Lj − ln

µ2

−sij
. (3)

S({β}, ϵ)
∏

i

J(L2

i , ϵ) |M({s}, ϵ⟩ = finite (1)

sij ≡ 2σij pi · pj

Li ≡ ln
µ2

−p2i

Ti

Γ({s}, µ) = Γs({s}, µ) +
n∑

i=1

Γi
c(Li, µ)1 (2)

βij ≡ ln
(−sij)µ2

(−p2i )(−p2j )
= Li + Lj − ln

µ2

−sij
. (3)

on-shell amplitude

Z(ϵ, {p}, µ) = P exp

[
∫

∞

µ

dµ′

µ′
Γ({p}, µ′)

]

, (10)

S = exp
( α

4π
S(1)

)

T
a
T

a = CF

sij ≡ ±2pi · pj

sij ≡ 2σij pi · pj

Li ≡ ln
µ2

−p2i

Ti

Γ({s}, µ) = Γs({s}, µ) +
n
∑

i=1

Γi
c(Li, µ)1 (11)

βij ≡ ln
(−sij)µ2

(−p2i )(−p2j )
= Li + Lj − ln

µ2

−sij
. (12)

dσ = tr
[

Hn ·
n
∏

i=1

J ⊗ Sn

]

(13)
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Soft and jet functions are operators in SCET. 
Renormalize: 

Renormalized, finite amplitude 

  
This renormalized amplitude defines a finite S-
matrix for massless theories. Corresponds to 
subtracting asymptotic soft+collinear int’s.

Renormalization

12

S({β}, ϵ)
∏

i

J(L2

i , ϵ) |M({s}, ϵ⟩ = finite (1)

S({β}, µ)
∏

i

J(L2

i , µ) |M({s}, µ⟩ = finite (2)

sij ≡ 2σij pi · pj

Li ≡ ln
µ2

−p2i

Ti

Γ({s}, µ) = Γs({s}, µ) +
n∑

i=1

Γi
c(Li, µ)1 (3)

βij ≡ ln
(−sij)µ2

(−p2i )(−p2j )
= Li + Lj − ln

µ2

−sij
. (4)

S({β}, ϵ)
∏

i

J(L2

i , ϵ) |M({s}, ϵ⟩ = finite (1)

S({β}, µ)
∏

i

J(L2

i , µ) |M({s}, µ⟩ = finite (2)

|Mn({s}, µ)⟩ = lim
ϵ→0

Z
−1(ϵ, {s}, µ) |Mn(ϵ, {s})⟩ . (3)

Γ({s}, µ) = −Z
−1(ϵ, {s}, µ)

d

d lnµ
Z(ϵ, {s}, µ) . (4)

d

d lnµ
|Mn({s}, µ)⟩ = Γ({s}, µ) |Mn({p}, µ)⟩ , (5)

Z(ϵ, {p}, µ) = P exp

[
∫

∞

µ

dµ′

µ′
Γ({p}, µ′)

]

, (6)

sij ≡ 2σij pi · pj

Li ≡ ln
µ2

−p2i

Ti

Γ({s}, µ) = Γs({s}, µ) +
n
∑

i=1

Γi
c(Li, µ)1 (7)

βij ≡ ln
(−sij)µ2

(−p2i )(−p2j )
= Li + Lj − ln

µ2

−sij
. (8)

Hannesdottir and Schwartz ‘19

TB, Neubert ‘09



Renormalization
Renormalization Group (RG) equation 
  

Anomalous dimension Γ determines IR singularities. 
Independence of μ  imposes constraint 

Note: 

• Γx contains logarithms of associated scales 

• Γ and Γs are matrices in color space
13

1 Introduction

Understanding the structure of infrared (IR) singularities of gauge-theory scattering ampli-
tudes is an important problem. On one hand, this helps in unveiling the deeper structure of
quantum field theory in higher orders of perturbation theory. On the other, it also has many
practical applications. In particular, the ability to predict the IR singularities of n-particle
amplitudes enables one to systematically resum large logarithmic corrections to cross sec-
tions and differential distributions for many important collider processes, leading to a higher
precision in the calculation of these observables.

The problem of predicting the structure of IR singularities of on-shell n-particle scattering
amplitudes in massless QCD simplifies, if one realizes that they can be put in one-to-one
correspondence with ultraviolet (UV) divergences of operators defined in soft-collinear effective
theory (SCET) [1]. This relation implies that IR divergences can be studied by means of
standard renormalization-group techniques – a concept that had been developed earlier in the
context of theories of Wilson lines [2]. The IR divergences of n-point scattering amplitudes
can be absorbed into a multiplicative renormalization factor Z, which can be derived from an
anomalous dimension Γ. Both objects are matrices in color space, i.e. they mix amplitudes with
the same particle content but different color structures. The predictive power of this approach
relies on the fact that the anomalous dimension is tightly constrained by the structure of the
effective field theory: soft-collinear factorization implies that it is given by the sum of a soft
and a collinear contribution,

Γ({s}, µ) = Γs({β}, µ) +
n∑

i=1

Γi
c(Li, µ) 1 , (1)

and given that there are no interactions among different collinear sectors of SCET [3–6], all
non-trivial color and momentum dependence is encoded in the soft anomalous dimension Γs.

The total anomalous dimension Γ depends on the n(n − 1)/2 kinematical variables sij ≡
2σij pi · pj + i0, where the sign factor σij = +1 if the momenta pi and pj are both incoming
or outgoing, and σij = −1 otherwise. We denote the collection of these variables by {s}. It
also depends on the color generators Ti of the n particles. We suppress this dependence in
the argument of the anomalous dimension but indicate it by the use of the boldface symbol Γ,
which shows that the anomalous dimension is a matrix in color space. We use the color-space
formalism, in which amplitudes are treated as n-dimensional vectors in color space [7]. Ti is
the color generator associated with the ith particle in the scattering amplitude, which acts as
an SU(Nc) matrix on the color indices of that particle.

The soft anomalous dimension Γs is the anomalous dimension of an operator built out
of n soft Wilson lines, one for each external particle, directed along the momentum of that
particle and defined in the appropriate representation of SU(Nc). The dependence of the soft
anomalous dimension on the external momenta pi of the particles is encoded via so-called cusp
angles βij (with i ≠ j), which for slightly off-shell, massless particles are defined as

βij = ln
(−sij)µ2

(−p2i − i0)(−p2j − i0)
= Li + Lj − ln

µ2

−sij
. (2)

2

S({β}, ϵ)
∏

i

J(L2

i , ϵ) |M({s}, ϵ⟩ = finite (1)

S({β}, µ)
∏

i

J(L2

i , µ) |M({s}, µ⟩ = finite (2)

|Mn({s}, µ)⟩ = lim
ϵ→0

Z
−1(ϵ, {s}, µ) |Mn(ϵ, {s})⟩ . (3)

Γ({s}, µ) = −Z
−1(ϵ, {s}, µ)

d

d lnµ
Z(ϵ, {s}, µ) . (4)

d

d lnµ
|Mn({s}, µ)⟩ = Γ({s}, µ) |Mn({p}, µ)⟩ , (5)

Z(ϵ, {p}, µ) = P exp

[
∫

∞

µ

dµ′

µ′
Γ({p}, µ′)

]

, (6)

sij ≡ 2σij pi · pj

Li ≡ ln
µ2

−p2i

Ti

Γ({s}, µ) = Γs({s}, µ) +
n
∑

i=1

Γi
c(Li, µ)1 (7)

βij ≡ ln
(−sij)µ2

(−p2i )(−p2j )
= Li + Lj − ln

µ2

−sij
. (8)

TB, Neubert ’09;  Gardi, Magnea ‘09



The following form is consistent with factorization 

Using color conservation 

  

one can rewrite the hard logarithms as soft+jet using 

Up to 2 loops above dipole form is correct. IR 
singularities agree with Catani ’98 and gives H(2)RS.

Dipole form
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S({β}, ϵ)
∏

i

J(L2

i , ϵ) |M({s}, ϵ⟩ = finite (1)

sij ≡ 2σij pi · pj

Li ≡ ln
µ2

p2i

Ti

Γ({s}, µ) = Γs({s}, µ) +
n∑

i=1

Γi
c(Li, µ)1 (2)

βij = ln
(−sij)µ2

(−p2i )(−p2j )
= Li + Lj − ln

µ2

−sij
. (3)

S({β}, ϵ)
∏

i

J(L2
i , ϵ) |M({s}, ϵ⟩ = finite (1)

S({β}, µ)
∏

i

J(L2
i , µ) |M({s}, µ⟩ = finite (2)

∆F (Q2) =

(

αs(µ)

4π

)4
[c8
ϵ8

+
c7
ϵ7

+ . . .
c2
ϵ2

+
c1
ϵ
+ c0

]

(

Q2

µ2

)4ϵ

(3)

da1...an

R = TrR
(

T
a1 . . .T an

)

+

Γ({s}, µ) =
∑

(i,j)

Ti · Tj

2
γcusp(αs) ln

µ2

−sij
+
∑

i

γi(αs)1

+ f(αs)
∑

(i,j,k)

Tiijk +
∑

(i,j,k,l)

Tijkl F (βijlk ,βiklj ;αs)

+
∑

R

gR(αs)

[

∑

(i,j)

(

DR
iijj + 2DR

iiij

)

ln
µ2

−sij
+

∑

(i,j,k)

DR
ijkk ln

µ2

−sij

]

+
∑

R

∑

(i,j,k,l)

DR
ijkl G

R(βijlk ,βiklj ;αs) +
∑

(i,j,k,l)

Tijkli H1(βijlk ,βiklj ;αs)

+
∑

(i,j,k,l,m)

Tijklm H2(βijkl ,βijmk,βikmj ,βjiml,βjlmi;αs) +O(α5
s) .

(4)

Γ({s}, µ) =
∑

(i,j)

T a
i T

a
j

2
γcusp(αs) ln

µ2

−sij
+
∑

i

γi(αs)1

+ f(αs)
∑

(i,j,k)

Tiijk +
∑

(i,j,k,l)

Tijkl F (βijlk ,βiklj ;αs)

+
∑

R

gR(αs)

[

∑

(i,j)

(

DR
iijj + 2DR

iiij

)

ln
µ2

−sij
+

∑

(i,j,k)

DR
ijkk ln

µ2

−sij

]

+
∑

R

∑

(i,j,k,l)

DR
ijkl G

R(βijlk ,βiklj ;αs) +
∑

(i,j,k,l)

Tijkli H1(βijlk ,βiklj ;αs)

+
∑

(i,j,k,l,m)

Tijklm H2(βijkl ,βijmk,βikmj ,βjiml,βjlmi;αs) +O(α5
s) .

(5)

∑

j

T
a
j = 0 →

∑

(ij)

T
a
i T

a
j = −

∑

i

T
a
i T

a
i = −

∑

i

Ci (6)
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d

d lnµ
Z(ϵ, {s}, µ) . (8)

d

d lnµ
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∑
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Z
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Γ({s}, µ) = −Z
−1(ϵ, {s}, µ)

d

d lnµ
Z(ϵ, {s}, µ) . (8)

d

d lnµ
|Mn({s}, µ)⟩ = Γ({s}, µ) |Mn({p}, µ)⟩ , (9)



Additional terms beyond 2 loops?
1.) Extra terms must be the same when 
expressed in ln(sij) or βij to be compatible with 
factorization. 

→ functions of conformal cross ratios 

independent of collinear scales. 

2.) Non-abelian exponentiation: only 
connected color structures.
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The collinear anomalous dimensions Γi
c are single-particle terms, which are diagonal in color

space and each depend on a single collinear scale Li = ln[µ2/(−p2i − i0)]. To all orders in
perturbation theory, they have the form [8]

Γi
c(Li, µ) = −Γi

cusp(αs)Li + γi
c(αs) , (3)

where the coefficients Γi
cusp(αs) is called the cusp anomalous dimension of particle i [9]. The

fact that the total anomalous dimension must be independent of the collinear scales p2i when
we combine the soft and collinear contributions implies the differential equation [10, 11]

dΓs({β}, µ)

dLi

=
∑

j ̸=i

∂Γs({β}, µ)

∂βij

= Γi
cusp(αs) 1 , (4)

where the expression on the right-hand side is a unit matrix in color space.
This relation provides an important constraint on the momentum and color structures that

can appear in the soft anomalous-dimension matrix. Because the kinematical invariants sij can
be assumed to be linearly independent, relation (4) implies that Γs depends only linearly on
the individual cusp angles βij . The only exception would be a more complicated dependence
on combinations of cusp angles, in which the collinear logarithms cancel. The simplest such
combination is

βijkl = βij + βkl − βik − βjl = ln
(−sij)(−skl)

(−sik)(−sjl)
, (5)

which coincides with the logarithm of the conformal cross ratio ρijkl defined in [10]. For
simplicity, we will use the term “conformal cross ratio” in the following also when referring to
βijkl. This quantity obeys the symmetry properties

βijkl = βjilk = −βikjl = −βljki = βklij . (6)

It is easy to show that any combination of cusp angles that is independent of collinear loga-
rithms can be expressed via such cross ratios. Moreover, given four particle momenta there
exist only two linearly independent conformal cross ratios, since

βijkl + βiklj + βiljk = 0 , (7)

and all other index permutations can be obtained using the symmetry properties in (6). Any
function of conformal cross ratios provides a solution to the homogeneous differential equation
associated with (4), and hence it can always be added to any particular solution of the equation.

Another powerful constraint arises from the non-abelian exponentiation theorem [12, 13],
which implies that only the color structures associated with fully connected gluon webs, whose
ends can be attached in arbitrary ways to the n Wilson lines, contribute to the soft anomalous
dimension [10, 11]. This severely restricts the color structures that can arise in higher orders of
the loop expansion. The generalization of the concept of “webs” to multi-particle amplitudes
has been discussed in detail in [14, 15].

Up to two-loop order, the constraints mentioned above imply that a simple dipole formula
describes the anomalous dimension for arbitrary scattering processes of n massless particles

3
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Non-abelian exponentiation

In massive QED, the soft function exponentiates 

In QCD, simple exponentiation does not hold, but only 
connected webs contribute to the anomalous 
dimension. (2 legs: Gatheral ’83, Frenkel and Taylor 
’84. n legs: Gardi, Smillie and White ’11, ’13)
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Z(ϵ, {p}, µ) = P exp

[
∫

∞

µ

dµ′

µ′
Γ({p}, µ′)

]

, (10)

S = exp
( α

4π
S(1)

)

sij ≡ 2σij pi · pj

Li ≡ ln
µ2

−p2i

Ti

Γ({s}, µ) = Γs({s}, µ) +
n
∑

i=1

Γi
c(Li, µ)1 (11)

βij ≡ ln
(−sij)µ2

(−p2i )(−p2j )
= Li + Lj − ln

µ2

−sij
. (12)

dσ = tr
[

Hn ·
n
∏

i=1

J ⊗ Sn

]

(13)

+ =
1

2

 !2
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Connected webs
Show that we only need color connected webs that 
are symmetrized in their attachments to legs i,j,k…
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Figure 2: Color-connected webs appearing up to four-loop order in the soft anomalous dimension
Γs. The webs represented by these graphs are the color structures that arise if the wavy lines are
replaced by gluons in the corresponding (fully connected) tree-level Feynman graphs.

multiple Wilson lines has been developed in [14, 15, 31–35]. It is based on an efficient method
to evaluate the diagrammatic contributions to the exponent S̃ introduced in [14, 36]. The
technique is called the “replica trick” and is well known in statistical physics (see e.g. [37]),
where it can be used to compute the logarithm of the partition function. It is based on the
identity

S̃ = lnS = lim
N→0

SN − 1

N
. (10)

The trick consists in evaluating SN with N replicas of QCD. The contribution to the exponent
S̃ is then obtained after expanding the result for SN in a Taylor series in N and picking up
the linear term. To get the N th power of S, one has to order the color matrices of the different
replicas on the Wilson line, i.e. one starts with the color matrices associated with the first
copy and ends with the ones of the N th copy when moving along the Wilson line.

An efficient way to compute the diagrams of the replicated theory is to draw the usual (non-
replicated) QCD Wilson-line diagrams and then assign different replicas to different gluons in
the diagram. To get the result in the replicated theory, one then has to add the proper com-
binatorial factor for each replica assignment. For example, if the diagram is fully connected,
only a single replica can contribute, because the different replicas are independent copies of
QCD and do not interact with each other. Since there are N replicas, the combinatorial factor
is N and the diagram directly contributes to S̃. This gives the basic, but important state-
ment that fully connected diagrams contribute to the exponent S̃. Given that these diagrams
are color connected, it is clear that the structures shown in Figure 2 are indeed present in
S̃. What remains to be shown is that the exponent does not involve any color-disconnected
contributions from other diagrams.

It is easy to show that disconnected diagrams do not give a contribution to the exponent,
since they scale as N2, as each part of the diagram can involve a different replica. The
interesting class of diagrams, which we will study in the following, are connected diagrams
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3 Reduction to symmetrized color structures

One can further simplify the connected webs shown in Figure 2 by symmetrizing the attach-
ments to the Wilson lines, as we did in [11]. Explicitly, the corresponding symmetrized color
structures are (sums over repeated color indices are implied)1

Dij = T
a
i T

a
j ≡ Ti · Tj , starting at one-loop order,

Tijk = ifabc
(
T

a
i T

b
j T

c
k

)
+
, starting at two-loop order,

Tijkl = fadef bce
(
T

a
i T

b
j T

c
kT

d
l

)
+
, starting at three-loop order,

DR
ijkl = dabcdR T

a
i T

b
j T

c
kT

d
l , starting at four-loop order,

Tijklm = ifadff bcgf efg
(
T

a
i T

b
j T

c
kT

d
l T

e
m

)
+
, starting at four-loop order.

(20)

Here

da1...anR = TrR
(
T

a1 . . .T an
)
+
≡

1

n!

∑

π

Tr
(
T

aπ(1)

R . . .T
aπ(n)

R

)
(21)

are symmetric invariant tensors given in terms of traces over symmetrized products of group
generators in the representation R. The (. . . )+ prescription only acts on generators attached to
the same particle line, e.g. Tijij = fadef bce (T a

i T
c
i )+(T

b
j T

d
j )+ for i ≠ j. For the structures Dij...

there is no need to write a (. . . )+ prescription, because they are totally symmetric in their color
indices. Note that (at least up to four-loop order) symmetric structures with an odd number of
indices do not arise. In particular, the color-symmetric three-gluon web dabcR T a

i T
b
j T

c
k does not

appear in perturbative calculations of the three-gluon vertex function up to four-loop order
[38–40]. In [40], an argument based on Bose symmetry and charge-conjugation invariance was
given that this should hold to all orders in perturbation theory.

While the color structures Dij and DR
ijkl are totally symmetric in their indices, the various

T structures have more complicated symmetry properties. Tijk is totally antisymmetric in its
indices, and it vanishes if two or three indices coincide. The structure Tijkl obeys the same
symmetry relations as the conformal cross ratios βijkl in (6), i.e.

Tijkl = Tjilk = −Tikjl = −Tljki = Tklij . (22)

It vanishes if three or four indices coincide. For two identical indices, the non-vanishing
symbols are [11]

Tiijj = −Tijij = fadef bce
(
T

a
i T

b
i

)
+

(
T

c
j T

d
j

)
+
,

Tiijk = −Tijik = −Tjiki = Tjkii = fadef bce
(
T

a
i T

b
i

)
+
T

c
j T

d
k .

(23)

Useful identities for the 5-index symbol Tijklm have been derived in [21]. In particular, it
satisfies the relations

Tijklm = −Tikjlm = −Tljkim = −Tjilkm , (24)

1Compared with [21] we have included an extra factor of i in the definition of the 5-index symbol Tijklm.
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j )+ for i ≠ j. For the structures Dij...

there is no need to write a (. . . )+ prescription, because they are totally symmetric in their color
indices. Note that (at least up to four-loop order) symmetric structures with an odd number of
indices do not arise. In particular, the color-symmetric three-gluon web dabcR T a

i T
b
j T

c
k does not

appear in perturbative calculations of the three-gluon vertex function up to four-loop order
[38–40]. In [40], an argument based on Bose symmetry and charge-conjugation invariance was
given that this should hold to all orders in perturbation theory.

While the color structures Dij and DR
ijkl are totally symmetric in their indices, the various

T structures have more complicated symmetry properties. Tijk is totally antisymmetric in its
indices, and it vanishes if two or three indices coincide. The structure Tijkl obeys the same
symmetry relations as the conformal cross ratios βijkl in (6), i.e.

Tijkl = Tjilk = −Tikjl = −Tljki = Tklij . (22)

It vanishes if three or four indices coincide. For two identical indices, the non-vanishing
symbols are [11]

Tiijj = −Tijij = fadef bce
(
T

a
i T

b
i

)
+

(
T

c
j T

d
j

)
+
,

Tiijk = −Tijik = −Tjiki = Tjkii = fadef bce
(
T

a
i T

b
i

)
+
T

c
j T

d
k .

(23)

Useful identities for the 5-index symbol Tijklm have been derived in [21]. In particular, it
satisfies the relations

Tijklm = −Tikjlm = −Tljkim = −Tjilkm , (24)

1Compared with [21] we have included an extra factor of i in the definition of the 5-index symbol Tijklm.

9

3 Reduction to symmetrized color structures

One can further simplify the connected webs shown in Figure 2 by symmetrizing the attach-
ments to the Wilson lines, as we did in [11]. Explicitly, the corresponding symmetrized color
structures are (sums over repeated color indices are implied)1

Dij = T
a
i T

a
j ≡ Ti · Tj , starting at one-loop order,

Tijk = ifabc
(
T

a
i T

b
j T

c
k

)
+
, starting at two-loop order,

Tijkl = fadef bce
(
T

a
i T

b
j T

c
kT

d
l

)
+
, starting at three-loop order,

DR
ijkl = dabcdR T

a
i T

b
j T

c
kT

d
l , starting at four-loop order,

Tijklm = ifadff bcgf efg
(
T

a
i T

b
j T

c
kT

d
l T

e
m

)
+
, starting at four-loop order.

(20)

Here

da1...anR = TrR
(
T

a1 . . .T an
)
+
≡

1

n!

∑

π

Tr
(
T

aπ(1)

R . . .T
aπ(n)

R

)
(21)

are symmetric invariant tensors given in terms of traces over symmetrized products of group
generators in the representation R. The (. . . )+ prescription only acts on generators attached to
the same particle line, e.g. Tijij = fadef bce (T a

i T
c
i )+(T

b
j T

d
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j )+ for i ≠ j. For the structures Dij...

there is no need to write a (. . . )+ prescription, because they are totally symmetric in their color
indices. Note that (at least up to four-loop order) symmetric structures with an odd number of
indices do not arise. In particular, the color-symmetric three-gluon web dabcR T a

i T
b
j T

c
k does not

appear in perturbative calculations of the three-gluon vertex function up to four-loop order
[38–40]. In [40], an argument based on Bose symmetry and charge-conjugation invariance was
given that this should hold to all orders in perturbation theory.

While the color structures Dij and DR
ijkl are totally symmetric in their indices, the various

T structures have more complicated symmetry properties. Tijk is totally antisymmetric in its
indices, and it vanishes if two or three indices coincide. The structure Tijkl obeys the same
symmetry relations as the conformal cross ratios βijkl in (6), i.e.

Tijkl = Tjilk = −Tikjl = −Tljki = Tklij . (22)

It vanishes if three or four indices coincide. For two identical indices, the non-vanishing
symbols are [11]

Tiijj = −Tijij = fadef bce
(
T

a
i T

b
i

)
+

(
T

c
j T

d
j

)
+
,

Tiijk = −Tijik = −Tjiki = Tjkii = fadef bce
(
T

a
i T

b
i

)
+
T

c
j T

d
k .

(23)

Useful identities for the 5-index symbol Tijklm have been derived in [21]. In particular, it
satisfies the relations

Tijklm = −Tikjlm = −Tljkim = −Tjilkm , (24)

1Compared with [21] we have included an extra factor of i in the definition of the 5-index symbol Tijklm.

9

3 Reduction to symmetrized color structures

One can further simplify the connected webs shown in Figure 2 by symmetrizing the attach-
ments to the Wilson lines, as we did in [11]. Explicitly, the corresponding symmetrized color
structures are (sums over repeated color indices are implied)1

Dij = T
a
i T

a
j ≡ Ti · Tj , starting at one-loop order,

Tijk = ifabc
(
T

a
i T

b
j T

c
k

)
+
, starting at two-loop order,

Tijkl = fadef bce
(
T

a
i T

b
j T

c
kT

d
l

)
+
, starting at three-loop order,

DR
ijkl = dabcdR T

a
i T

b
j T

c
kT

d
l , starting at four-loop order,

Tijklm = ifadff bcgf efg
(
T

a
i T

b
j T

c
kT

d
l T

e
m

)
+
, starting at four-loop order.

(20)

Here

da1...anR = TrR
(
T

a1 . . .T an
)
+
≡

1

n!

∑

π

Tr
(
T

aπ(1)

R . . .T
aπ(n)

R

)
(21)

are symmetric invariant tensors given in terms of traces over symmetrized products of group
generators in the representation R. The (. . . )+ prescription only acts on generators attached to
the same particle line, e.g. Tijij = fadef bce (T a

i T
c
i )+(T

b
j T

d
j )+ for i ≠ j. For the structures Dij...

there is no need to write a (. . . )+ prescription, because they are totally symmetric in their color
indices. Note that (at least up to four-loop order) symmetric structures with an odd number of
indices do not arise. In particular, the color-symmetric three-gluon web dabcR T a

i T
b
j T

c
k does not

appear in perturbative calculations of the three-gluon vertex function up to four-loop order
[38–40]. In [40], an argument based on Bose symmetry and charge-conjugation invariance was
given that this should hold to all orders in perturbation theory.

While the color structures Dij and DR
ijkl are totally symmetric in their indices, the various

T structures have more complicated symmetry properties. Tijk is totally antisymmetric in its
indices, and it vanishes if two or three indices coincide. The structure Tijkl obeys the same
symmetry relations as the conformal cross ratios βijkl in (6), i.e.

Tijkl = Tjilk = −Tikjl = −Tljki = Tklij . (22)

It vanishes if three or four indices coincide. For two identical indices, the non-vanishing
symbols are [11]

Tiijj = −Tijij = fadef bce
(
T

a
i T

b
i

)
+

(
T

c
j T

d
j

)
+
,

Tiijk = −Tijik = −Tjiki = Tjkii = fadef bce
(
T

a
i T

b
i

)
+
T

c
j T

d
k .

(23)

Useful identities for the 5-index symbol Tijklm have been derived in [21]. In particular, it
satisfies the relations

Tijklm = −Tikjlm = −Tljkim = −Tjilkm , (24)

1Compared with [21] we have included an extra factor of i in the definition of the 5-index symbol Tijklm.
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4-loop anomalous dimension

Simplified compared to TB Neubert ’09, Ahrens, Neubert and 
Vernazza ’12. Earlier papers concluded that higher Casimir terms 
were excluded by factorization in collinear limit — true individually, 
but certain linear combinations are allowed!

18

S({β}, ϵ)
∏

i

J(L2
i , ϵ) |M({s}, ϵ⟩ = finite (1)

S({β}, µ)
∏

i

J(L2
i , µ) |M({s}, µ⟩ = finite (2)

∆F (Q2) =

(

αs(µ)

4π

)4
[c8
ϵ8

+
c7
ϵ7

+ . . .
c2
ϵ2

+
c1
ϵ
+ c0

]

(

Q2

µ2

)4ϵ

(3)

da1...an

R = TrR
(

T
a1 . . .T an

)

+

Γ({s}, µ) =
∑

(i,j)

Ti · Tj

2
γcusp(αs) ln

µ2

−sij
+
∑

i

γi(αs)1

+ f(αs)
∑

(i,j,k)

Tiijk +
∑

(i,j,k,l)

Tijkl F (βijlk ,βiklj ;αs)

+
∑

R

gR(αs)

[

∑

(i,j)

(

DR
iijj + 2DR

iiij

)

ln
µ2

−sij
+

∑

(i,j,k)

DR
ijkk ln

µ2

−sij

]

+
∑

R

∑

(i,j,k,l)

DR
ijkl G

R(βijlk ,βiklj ;αs) +
∑

(i,j,k,l)

Tijkli H1(βijlk ,βiklj ;αs)

+
∑

(i,j,k,l,m)

Tijklm H2(βijkl ,βijmk,βikmj ,βjiml,βjlmi;αs) +O(α5
s) .

(4)

Γ({s}, µ) =
∑

(i,j)

T a
i T

a
j

2
γcusp(αs) ln

µ2

−sij
+
∑

i

γi(αs)1

+ f(αs)
∑

(i,j,k)

Tiijk +
∑

(i,j,k,l)

Tijkl F (βijlk ,βiklj ;αs)

+
∑

R

gR(αs)

[

∑

(i,j)

(

DR
iijj + 2DR

iiij

)

ln
µ2

−sij
+

∑

(i,j,k)

DR
ijkk ln

µ2

−sij

]

+
∑

R

∑

(i,j,k,l)

DR
ijkl G

R(βijlk ,βiklj ;αs) +
∑

(i,j,k,l)

Tijkli H1(βijlk ,βiklj ;αs)

+
∑

(i,j,k,l,m)

Tijklm H2(βijkl ,βijmk,βikmj ,βjiml,βjlmi;αs) +O(α5
s) .

(5)

∑

j

T
a
j = 0 →

∑

(ij)

T
a
i T

a
j = −

∑

i

T
a
i T

a
i = −

∑

i

Ci (6)

|Mn({s}, µ)⟩ = lim
ϵ→0

Z
−1(ϵ, {s}, µ) |Mn(ϵ, {s})⟩ . (7)

Γ({s}, µ) = −Z
−1(ϵ, {s}, µ)

d

d lnµ
Z(ϵ, {s}, µ) . (8)

d

d lnµ
|Mn({s}, µ)⟩ = Γ({s}, µ) |Mn({p}, µ)⟩ , (9)



Ingredients

color structures DR
ijkl, since the extra terms in (39), which have already been considered above,

give rise to symmetric structures of lower order.
We finally focus on the five-gluon web shown by the last graph in Figure 2, which gives

rise to the primary color structure

Tijklm = ifadff bcgf efg
T

a
i T

b
j T

c
kT

d
l T

e
m . (40)

Once again, it is straightforward to show that it suffices to consider the symmetrized color
structures Tijklm, since all commutator terms can be reduced structures already encountered
in lower orders, including Tijkl and DA

ijkl. For the purpose of illustration, we quote the relevant
relations for the cases where exactly two indices coincide. We find

Tijkim = −Tjiikm =
CA

2
Tijkm ,

Tiiklm = −Tikilm = Tkilim = −Tkliim = Tiiklm −
1

2
DA

iklm −
CA

12
(Tikml + Tilmk) ,

Tijkli = −Tljkii = Tijkli +
CA

4
Tijkl ,

Tijklj = −Tikjlj = Tijklj −
CA

4
Tijkl .

(41)

If three or more indices coincide, the corresponding relations also contain the color structures
Tijk, Dij and 1. As a corollary, note that while at four-loop order in QCD the color structure
DF

ijkl only arises from the four-gluon vertex with an internal quark loop, the corresponding
structure DA

ijkl in the adjoint representation receives contributions also from diagrams without
closed gluon (or ghost) loops.

4 Anomalous dimension up to four-loop order

Combining the constraints imposed by soft-collinear factorization and non-abelian exponenti-
ation, we find that the most general form of the anomalous-dimension matrix up to four-loop
order can be written as

Γ({s}, µ) =
∑

(i,j)

Ti · Tj

2
γcusp(αs) ln

µ2

−sij
+
∑

i

γi(αs) 1

+ f(αs)
∑

(i,j,k)

Tiijk +
∑

(i,j,k,l)

Tijkl F (βijlk, βiklj;αs)

+
∑

R

gR(αs)

[∑

(i,j)

(
DR

iijj + 2DR
iiij

)
ln

µ2

−sij
+

∑

(i,j,k)

DR
ijkk ln

µ2

−sij

]

+
∑

R

∑

(i,j,k,l)

DR
ijkl G

R(βijlk, βiklj;αs) +
∑

(i,j,k,l)

TijkliH1(βijlk, βiklj;αs)

+
∑

(i,j,k,l,m)

TijklmH2(βijkl, βijmk, βikmj , βjiml, βjlmi;αs) +O(α5
s) .

(42)
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Vermaseren and Vogt ’17 ’18; Grozin ’18; Lee, Smirnov, Smirnov and 
Steinhauser ’17 ’19; Henn, Peraro, Stahlhofen and Wasser ’19, von Manteuffel 
and Schabinger ’19; Brüser, Grozin, Henn and Stahlhofen ‘19, Henn, 
Korchemsky and Mistlberger 19  

Vladimirov ‘17 claims only even structures 
should arise: H1 and H2 zero?



Ingredients

• The full three-loop result is known 
• IR singularities of all 3-loop amplitudes are known 

• All logarithmic pieces are known to four loops 
• All IR singularities at 4-loops, except 1/ε are known 
• Resummation to N3LL for n-jet processes
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color structures DR
ijkl, since the extra terms in (39), which have already been considered above,

give rise to symmetric structures of lower order.
We finally focus on the five-gluon web shown by the last graph in Figure 2, which gives

rise to the primary color structure

Tijklm = ifadff bcgf efg
T

a
i T

b
j T

c
kT

d
l T

e
m . (40)

Once again, it is straightforward to show that it suffices to consider the symmetrized color
structures Tijklm, since all commutator terms can be reduced structures already encountered
in lower orders, including Tijkl and DA

ijkl. For the purpose of illustration, we quote the relevant
relations for the cases where exactly two indices coincide. We find

Tijkim = −Tjiikm =
CA

2
Tijkm ,

Tiiklm = −Tikilm = Tkilim = −Tkliim = Tiiklm −
1

2
DA

iklm −
CA

12
(Tikml + Tilmk) ,

Tijkli = −Tljkii = Tijkli +
CA

4
Tijkl ,

Tijklj = −Tikjlj = Tijklj −
CA

4
Tijkl .

(41)

If three or more indices coincide, the corresponding relations also contain the color structures
Tijk, Dij and 1. As a corollary, note that while at four-loop order in QCD the color structure
DF

ijkl only arises from the four-gluon vertex with an internal quark loop, the corresponding
structure DA

ijkl in the adjoint representation receives contributions also from diagrams without
closed gluon (or ghost) loops.

4 Anomalous dimension up to four-loop order

Combining the constraints imposed by soft-collinear factorization and non-abelian exponenti-
ation, we find that the most general form of the anomalous-dimension matrix up to four-loop
order can be written as

Γ({s}, µ) =
∑

(i,j)

Ti · Tj

2
γcusp(αs) ln

µ2

−sij
+
∑

i

γi(αs) 1

+ f(αs)
∑

(i,j,k)

Tiijk +
∑

(i,j,k,l)

Tijkl F (βijlk, βiklj;αs)

+
∑

R

gR(αs)

[∑

(i,j)

(
DR

iijj + 2DR
iiij

)
ln

µ2

−sij
+

∑

(i,j,k)

DR
ijkk ln

µ2

−sij

]

+
∑

R

∑

(i,j,k,l)

DR
ijkl G

R(βijlk, βiklj;αs) +
∑

(i,j,k,l)

TijkliH1(βijlk, βiklj;αs)

+
∑

(i,j,k,l,m)

TijklmH2(βijkl, βijmk, βikmj , βjiml, βjlmi;αs) +O(α5
s) .

(42)
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Consistency with collinear limits
• When two partons become collinear, an n-point 

amplitude Mn reduces to an (n-1)-parton amplitude 
times a splitting function: 

• ΓSp must be independent of momenta and colors of 
partons 3, ..., n

21

5 Consistency with collinear limits

Before turning to a diagrammatic study of the anomalous-dimension matrix we discuss one
more non-trivial constraint it must obey, which derives from the known behavior of scattering
amplitudes in the limit where two or more external partons become collinear.

In the limit where the momenta of two of the external partons become collinear, an n-parton
scattering amplitude factorizes into the product of an (n − 1)-parton scattering amplitude
times a universal, process-independent splitting function. This was first shown at tree level
in [63, 64], and extended to one-loop order in [65]. An all-order proof was given in [66].
Strictly speaking, the proof was constructed for leading-color amplitudes only, but the crucial
ingredients are unitarity and analyticity, and it should be possible to extend it to the general
case. Collinear factorization holds at the level of the leading singular terms. It is often
studied for color-ordered amplitudes, for which the color information is stripped off. The
color-stripped splitting functions for the splitting of a parent parton P into collinear partons
a and b are usually denoted by SplitσP

(aσa , bσb) in the literature, where σi denote the helicities
of the partons. These functions have been calculated at tree level (see, e.g., [67]) and to
one-loop order [68]. In contrast, we will study collinear factorization using the color-space
formalism, extending the work of [69] beyond the one-loop approximation. The splitting
functions, which we denote by Sp({pa, pb}), are then matrices in color space, which depend
on the color generators and momenta of the partons involved in the splitting process. For
Catani’s formula (15), the consistency with collinear limits was shown in [34].

Consider, for concreteness, the limit where the partons 1 and 2 become collinear and merge
into an unresolved parton P . We assign momenta p1 = zP and p2 = (1 − z)P and consider
the collinear limit P 2 → 0. In this limit the scattering amplitude factorizes in the form

|Mn({p1, p2, p3, . . . , pn})⟩ = Sp({p1, p2}) |Mn−1({P, p3, . . . , pn})⟩ + . . . . (54)

The splitting function encodes the singular behavior of the amplitude |Mn⟩ as p1||p2, and the
factorization holds up to terms that are regular in the collinear limit. Analogous relations
describe the behavior in limits where more than two partons become collinear. However, it is
sufficient for our purposes to focus on the simplest case.

The factorization formula (54) holds both for the dimensionally regularized scattering
amplitudes |Mn(ϵ, {p})⟩ as well as for the minimally subtracted amplitudes |Mn({p}, µ)⟩ in
(1). Since we know that the divergences of the amplitude can be absorbed into a Z-factor,
equation (54) implies a constraint on the divergences of the splitting function. It can be
written as

lim
ϵ→0

Z
−1(ϵ, {p1, . . . , pn}, µ)Sp(ϵ, {p1, p2}) Z(ϵ, {P, p3 . . . , pn}) = Sp({p1, p2}, µ) , (55)

where the renormalized splitting function on the right-hand side is finite for ϵ → 0. From (5)
it then follows that the renormalized splitting function fulfills the RG equation

d

d lnµ
Sp({p1, p2}, µ) = Γ({p1, . . . , pn}, µ)Sp({p1, p2}, µ)

− Sp({p1, p2}, µ)Γ({P, p3 . . . , pn}, µ) .

(56)
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This form may be derived from either the Berends–Giele recurrence relations [17], or else [18]

from the Koba–Nielsen open-string amplitude [19]. Either derivation shows that this factorization

holds only for on-shell (that is, physically polarized) legs a, b, but in arbitrary dimension. The

following arguments will thus go through equally well in the four-dimensional helicity scheme, the

conventional dimensional regularization scheme, or the original ’t Hooft–Veltman scheme.

b

a

a || b
b

a

a+b

Figure 1. A schematic depiction of the collinear factorization of tree-level amplitudes, with

the amplitudes labelled clockwise.

The tree splitting amplitude is given by the appropriate limit of the three-point Berends-Giele

current,

Splittreeσ (aλa , bλb) =
1√
2sab

[

ε(λa)
a · ε(λb)

b (kb − ka) · ε(σ)
−Σ + 2ka · ε

(λb)
b ε(λa)

a · ε(σ)
−Σ − 2kb · ε(λa)

a ε(λb)
b · ε(σ)

−Σ

]

,

(3.3)

where Σ denotes the fused leg, kΣ = ka + kb.

In the limit, eqn. (3.1) then yields,

∑

ph. pol. σ

Splittree−σ (aλa , bλb)

∫

dLIPS4−2ϵ(ℓ1,−ℓ2)

× Atree
n−m+2(ℓ1, c, . . . , d,−ℓ2)A

tree
m+1(ℓ2, d+1, . . . , (a + b)σ, . . . , c−1,−ℓ1)

=
∑

ph. pol. σ

Splittree−σ (aλa , bλb) A1-loop
n−1 (1, . . . , (a + b)σ, . . . , n)

∣

∣

∣

tc···d cut
.

(3.4)

As noted in section 2, we need not consider cuts where the momenta are on opposite sides of

the cut (in which case they are both necessarily adjacent to it). The above derivation breaks down,

as expected, if a and b are the only legs on one side of the cut; but all contributions except those

detectable in the singular channel take the form presented in eqn. (3.4). This leaves us with the

singular channel, which I consider next.
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Analogous equations hold for the higher splitting functions Sp({p1, . . . , pm}, µ), which describe
the limits where more than two partons become collinear. To bring the RG equation into a
more useful form, we note that charge conservation implies

(T1 + T2)Sp({p1, p2}, µ) = Sp({p1, p2}, µ) TP , (57)

where TP is the color generator associated with the parent parton P . Since the splitting
function commutes with the generators of partons not involved in the splitting process, we
can thus commute the anomalous dimension in the second term to the left to obtain

d

d lnµ
Sp({p1, p2}, µ) = ΓSp({p1, p2}, µ)Sp({p1, p2}, µ) , (58)

where we have defined

ΓSp({p1, p2}, µ) = Γ({p1, . . . , pn}, µ) − Γ({P, p3 . . . , pn}, µ)
∣∣
TP→T1+T2

. (59)

The fact that the anomalous dimension of the splitting function must be independent of the
colors and momenta of the partons not involved in the splitting process, which is a conse-
quence of the factorization formula (54), imposes a non-trivial constraint on the form of the
anomalous-dimension matrix. We will explore its implications in Section 6.6.

Assuming the form (7) for the anomalous-dimension matrix Γ, we find that the anomalous
dimension of the splitting function has the form

ΓSp({p1, p2}, µ) = γcusp

[
T1 · T2 ln

µ2

−s12
+ T1 · (T1 + T2) ln z + T2 · (T1 + T2) ln(1 − z)

]

+ γ1 + γ2 − γP , (60)

where γP is the anomalous dimension associated with the unresolved parton P . Note that the
momentum-dependent terms in the result are insensitive to the flavor of the partons involved
in the splitting process. The divergent part of the one-loop splitting function for m partons in
the color-space formalism was given in [69]. Expanding the result obtained there for the case
m = 2, we find

Sp1−loop(ϵ, {p1, p2}) =
αs

4π

[(
2

ϵ2
+

2

ϵ
ln

µ2

−s12

)
T1 · T2

+
2

ϵ

[
T1 · (T1 + T2) ln z + T2 · (T1 + T2) ln(1 − z)

]

+
1

2ϵ

(
γ1

0 + γ2
0 − γa

0

)
+ O(ϵ0)

]
Sptree({p1, p2}) ,

(61)

which is in agreement with the result obtained by solving the RG equation (58).
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Berends, Giele ’89; Mangano, Parke ’91 
Kosower ’99; Catani, de Florian, Rodrigo ‘03

TB, Neubert ‘09
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• The fact that ΓSp must be independent of the colors and 
momenta of the remaining particles imposes strong 
constraint on Γ. 

• ’09, ‘12 papers concluded that the coefficients of the 
higher-multiplicity terms should vanish in the collinear limit. 

• Deriving the 3-loop result Almelid, Duhr and Gardi ‘16  
realized that this is not true: different terms can conspire in 
the limit to be compatible! 

• Similarly, the higher Casimir coefficients must obey
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Consistency with collinear limits

If we impose the condition

lim
ω→−∞

F (ω, 0;αs) =
f(αs)

2
, (75)

then collinear factorization holds. The explicit expression for F obtained in [22] shows that
this condition is indeed satisfied.

Concerning the terms shown in the next three lines, we had assumed in [11, 21] that the
coefficients of the terms involving particle indices other than 1 and 2 vanish individually, i.e.
gR(αs) = 0 and GR(ωij, 0;αs) → 0 for ωij → −∞. Under this assumption, the cusp anomalous
dimension in (67) would obey Casimir scaling at four-loop order. Once again, there exists a
more general solution, in which we impose that the function GR of conformal cross ratios
obeys the relation

lim
ω→−∞

GR(ω, 0;αs) = −
gR(αs)

6
ω , (76)

meaning that it diverges logarithmically in the collinear limit. The coefficients gR(αs) are then
no longer forced to vanish, in accordance with the explicit results in (68).

Let us finally comment on the terms in (72) involving the 5-index Tijklm symbols, whose
explicit form is discussed in Appendix C. There are various contributions to the anomalous
dimension of the splitting amplitude descending from the functions H1 and H2, see (C.3). The
requirement that the sum of these terms must not depend on particle indices other than 1 and
2 implies the condition

lim
ω→−∞

H1(ω, 0;αs) = 0 (77)

as well as a more non-trivial relation given in (C.5). We find that when these relations are
satisfied, the contributions involving the 5-index Tijklm symbols vanish identically.

Combining all pieces, we conclude that up to four-loop order the anomalous dimension of
the splitting amplitude is given by

ΓSp({p1, p2}, µ)

=

{
γcusp(αs)T1 · T2 +

∑

R

2gR(αs)
[
3DR

1122 + 2
(
DR

1112 +DR
1222

)]}[
ln

µ2

−s12
+ ln z(1− z)

]

+ γcusp(αs)
[
CR1 ln z + CR2 ln(1− z)

]
+ γ1(αs) + γ2(αs)− γP (αs)

− 6f(αs)

(
T1122 +

C2
A

8
T1 · T2

)
+
∑

R

2gR(αs)
[
DR

1111 ln z +DR
2222 ln(1− z)

]
+O(α5

s) .

(78)
This result holds irrespectively of whether or not the five-particle contributions proportional
to H1 and H2 contribute to the anomalous dimension (42) (see the discussion at the end of
Section 4).
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C2
A

8
T1 · T2

)
+
∑

R

2gR(αs)
[
DR

1111 ln z +DR
2222 ln(1− z)

]
+O(α5

s) .

(78)
This result holds irrespectively of whether or not the five-particle contributions proportional
to H1 and H2 contribute to the anomalous dimension (42) (see the discussion at the end of
Section 4).
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Evaluating 
         
in the collinear limit, one obtains 

Log terms known to 4 loops! ( f, γi only to 3 loops)

Result for ΓSp 
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If we impose the condition

lim
ω→−∞

F (ω, 0;αs) =
f(αs)

2
, (75)

then collinear factorization holds. The explicit expression for F obtained in [22] shows that
this condition is indeed satisfied.

Concerning the terms shown in the next three lines, we had assumed in [11, 21] that the
coefficients of the terms involving particle indices other than 1 and 2 vanish individually, i.e.
gR(αs) = 0 and GR(ωij, 0;αs) → 0 for ωij → −∞. Under this assumption, the cusp anomalous
dimension in (67) would obey Casimir scaling at four-loop order. Once again, there exists a
more general solution, in which we impose that the function GR of conformal cross ratios
obeys the relation

lim
ω→−∞

GR(ω, 0;αs) = −
gR(αs)

6
ω , (76)

meaning that it diverges logarithmically in the collinear limit. The coefficients gR(αs) are then
no longer forced to vanish, in accordance with the explicit results in (68).

Let us finally comment on the terms in (72) involving the 5-index Tijklm symbols, whose
explicit form is discussed in Appendix C. There are various contributions to the anomalous
dimension of the splitting amplitude descending from the functions H1 and H2, see (C.3). The
requirement that the sum of these terms must not depend on particle indices other than 1 and
2 implies the condition

lim
ω→−∞

H1(ω, 0;αs) = 0 (77)

as well as a more non-trivial relation given in (C.5). We find that when these relations are
satisfied, the contributions involving the 5-index Tijklm symbols vanish identically.

Combining all pieces, we conclude that up to four-loop order the anomalous dimension of
the splitting amplitude is given by

ΓSp({p1, p2}, µ)

=

{
γcusp(αs)T1 · T2 +

∑

R

2gR(αs)
[
3DR

1122 + 2
(
DR

1112 +DR
1222

)]}[
ln

µ2

−s12
+ ln z(1− z)

]

+ γcusp(αs)
[
CR1 ln z + CR2 ln(1− z)

]
+ γ1(αs) + γ2(αs)− γP (αs)

− 6f(αs)

(
T1122 +

C2
A

8
T1 · T2

)
+
∑

R

2gR(αs)
[
DR

1111 ln z +DR
2222 ln(1− z)

]
+O(α5

s) .

(78)
This result holds irrespectively of whether or not the five-particle contributions proportional
to H1 and H2 contribute to the anomalous dimension (42) (see the discussion at the end of
Section 4).
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Analogous equations hold for the higher splitting functions Sp({p1, . . . , pm}, µ), which describe
the limits where more than two partons become collinear. To bring the RG equation into a
more useful form, we note that charge conservation implies

(T1 + T2)Sp({p1, p2}, µ) = Sp({p1, p2}, µ) TP , (57)

where TP is the color generator associated with the parent parton P . Since the splitting
function commutes with the generators of partons not involved in the splitting process, we
can thus commute the anomalous dimension in the second term to the left to obtain

d

d lnµ
Sp({p1, p2}, µ) = ΓSp({p1, p2}, µ)Sp({p1, p2}, µ) , (58)

where we have defined

ΓSp({p1, p2}, µ) = Γ({p1, . . . , pn}, µ) − Γ({P, p3 . . . , pn}, µ)
∣∣
TP→T1+T2

. (59)

The fact that the anomalous dimension of the splitting function must be independent of the
colors and momenta of the partons not involved in the splitting process, which is a conse-
quence of the factorization formula (54), imposes a non-trivial constraint on the form of the
anomalous-dimension matrix. We will explore its implications in Section 6.6.

Assuming the form (7) for the anomalous-dimension matrix Γ, we find that the anomalous
dimension of the splitting function has the form

ΓSp({p1, p2}, µ) = γcusp

[
T1 · T2 ln

µ2

−s12
+ T1 · (T1 + T2) ln z + T2 · (T1 + T2) ln(1 − z)

]

+ γ1 + γ2 − γP , (60)

where γP is the anomalous dimension associated with the unresolved parton P . Note that the
momentum-dependent terms in the result are insensitive to the flavor of the partons involved
in the splitting process. The divergent part of the one-loop splitting function for m partons in
the color-space formalism was given in [69]. Expanding the result obtained there for the case
m = 2, we find

Sp1−loop(ϵ, {p1, p2}) =
αs

4π

[(
2

ϵ2
+

2

ϵ
ln

µ2

−s12

)
T1 · T2

+
2

ϵ

[
T1 · (T1 + T2) ln z + T2 · (T1 + T2) ln(1 − z)

]

+
1

2ϵ

(
γ1

0 + γ2
0 − γa

0

)
+ O(ϵ0)

]
Sptree({p1, p2}) ,

(61)

which is in agreement with the result obtained by solving the RG equation (58).
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* a painful exercise in color algebra!!

*



Does it work?

Yes! Recent computation of 3-loop four-gluon 
amplitude in pure YM theory verified that IR 
singularities agree with general result. Jin, Luo ‘19

24

3

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 1. A minimal set of unitarity cuts for the 4-gluon 3-loop
planar amplitudes.

With the help of zone variables [44], a single set of
propagators can be used to parameterize all planar dia-
grams:

Di = {(l2 − l3)
2, (l1 − l3)

2, (l1 − l2)
2} ,

Da
i = (li + p1 + · · ·+ pa−1)

2 ,
(6)

where i = 1, 2, 3, a = 1, 2, 3, 4. The coefficients
of gauge invariant bases cα in eq. (5) after IBP re-
ductions are decomposed into master integrals MI =
∫
∏3

j=1 dljI(Di, Da
i ) and functions of Mandelstam vari-

ables s = (p1 + p2)2, t = (p2 + p3)2, then the cut ampli-
tudes can be written as

A =
∑

α

c̃αj (s, t)MIjBα . (7)

Under a cyclic rotation operation r, which is a gener-
ator of Z4 and maps the i-th gluon to the (i+ 1)-th, the
Mandelstam variables, propagators and gauge invariant
bases in eq. (7) transform as

r : s ↔ t, Di → Di+1, Da
i → Da

i+1 ,

B1 → B1, B2 → B2, B3 ↔ B4, B5 ↔ B6,

B7 → B8, B8 → B9, B9 → B10, B10 → B7 .

(8)

However, the master integrals automatically chosen by
FIRE6 do not preserve the Z4 symmetry. We then man-
ually select a new set of integral bases closed under the Z4

transformations, and transform the old set into the new
one. The cut integrands in terms of new master integral
bases are still not manifestly cyclic invariant, due to the
fact that the cyclic rotations induce permutations among
loop momenta. For instance, FIG. 2 illustrates that twice
cyclic rotations induce a switch between loop momenta
l1 ↔ l3, which results in D1 ↔ D3 and Da

1 ↔ Da
3 . If

some master integrands I(Di, Da
i ) can be mapped to each

other by permutations of loop momenta as in FIG. 2, they
should be identified as the same. However, if several such
equivalent I(Di, Da

i ) terms are captured by the same cut

p1

p2 p3

p4D1
1 D1

2 D1
3

D3
1 D3

2 D3
3

D2
1 D3 D1 D4

3 =⇒

p1

p2 p3

p4D1
3 D1

2 D1
1

D3
3 D3

2 D3
1

D2
3 D1 D3 D4

1

r2

FIG. 2. Two different parameterizations are used to label one
integral. Both parameterizations belong to cut (a) of FIG.
1. The switch of loop momenta l1 ↔ l3 can be induced by a
cyclic permutations r2.

simultaneously, as illustrated in FIG. 2 and 4, then only
one I(Di, Da

i ) together with its coefficient should be re-
tained, while all the others must be dropped to avoid
over counting.
The consistency between different cuts imposed two

conditions to the coefficients of master integrals. First,
the coefficients of the equivalent master integrals must
be the same. Second, if two integrals are related by the
Z4 symmetry, their coefficients are also related by the Z4

transformations generated by eq. (8). Passing these cross
checks is a very strong evidence of the correctness of our
constructions.
Special attention must be paid to a pair of bubble-

sunrise type diagrams shown in FIG. 3. Although they
correspond the same integral, they are distinct diagrams,
and their coefficients are related by a r2 transformation.
Both the diagrams should be included in the final result.

p1

p2 p3

p4 p1

p2 p3

p4

FIG. 3. A pair diagrams which are topologically different, but
correspond to the same integral.

Another pair of diagrams required more attention, as
in FIG. 4. Similar as FIG. 2, these two equivalent di-
agrams are captured by the same cut, and only one of
them need to be retained. However, they are indistin-
guishable in the I(Di, Da

i ) form, so in the cut integrand
the coefficient of this integral is actually twice of its cor-
rect value.

p1

p2 p3

p4

p3

p4

p2

p1

FIG. 4. A pair of equivalent diagrams with indistinguishable
I(Di, D

a

i ) form.

If one tries to construct correct loop integrands from
unitarity cuts before IBP reductions, all the difficul-
ties and ambiguities above would be exacerbated by the
huge number of topologies and higher power numerators
therein.



Resummation at N3LL



Precision measurements at the LHC
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A huge challenge for theory!



We have derived our factorization formula using off-
shell Green’s functions, but the factorization 

  

arises for many physical cross sections. J and S are 
observable dependent, but H is square of on-shell 
amplitudes. 
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e+e− → 2 jets DIS Z,W,H production

Z(ϵ, {p}, µ) = P exp

[
∫

∞

µ

dµ′

µ′
Γ({p}, µ′)

]

, (10)

sij ≡ 2σij pi · pj

Li ≡ ln
µ2

−p2i

Ti

Γ({s}, µ) = Γs({s}, µ) +
n
∑

i=1

Γi
c(Li, µ)1 (11)

βij ≡ ln
(−sij)µ2

(−p2i )(−p2j )
= Li + Lj − ln

µ2

−sij
. (12)

dσ = tr
[

Hn ·
n
∏

i=1

J ⊗ Sn

]

(13)

→ Zoltan Trocsanyi’s talk



EW boson production at small qT
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mp

Q

qT

HijB̄i
B̄j

⇠1p1 ⇠2p2

V1

VN

q1

qN

p1 p2

V2

q2

. . .

Figure 1: Structure and kinematics of the factorization theorem for electroweak boson pro-
duction at low transverse momentum. The wavy lines denote the bosons in the final state.
We can also include their leptonic decays in our framework.

the incoming parton, see Figures 1 and 2. We will discuss these functions and the associated
Fourier integral over the transverse separation x? in more detail below. Let us note that for
gluon-induced processes, such as Higgs production, two beam function structures arise. In
this case the factorization formula involves a sum of two products of beam functions rather
than just a product [18,33]. However, the second structure first arises at NNNLL and is thus
not relevant in the present paper.

Secondly, the resummed result also includes the virtual corrections to the Born level pro-
cess. These are part of the hard function Hij, which is given by the loop contribution to the
process, after subtracting its divergences in MS renormalization. We write the expansion of
the hard function in the form

Hij(p̂1, p̂2, q1, ..., qN , µ) = 1 +
↵s(µ)

4⇡
H(1)

ij (p̂1, p̂2, q1, ..., qN , µ) +O(↵2

s) . (6)

The one-loop hard function for quark-induced processes takes the form

H(1)

qq̄ = �2CF ln2
Q

2

µ2
+ 6CF ln

Q
2

µ2
+ h0(p̂1, p̂2, q1, ..., qN) . (7)

The µ dependence is universal since it is driven by the anomalous dimension of the operator
with a single collinear quark field for each beam direction. All nontrivial information about
the process resides in the scale independent piece h0. For Z boson production we have h0 =
CF (�16 + 7⇡2

/3). For more complicated processes, we use MadGraph5_aMC@NLO to
compute the one-loop corrections, as described in detail in [28]. Specifically, running the code
at an arbitrary reference scale µMad, the hard function is related to the finite part C0 of the
virtual contribution obtained from MadGraph5_aMC@NLO as follows:

h0(p̂1, p̂2, q1, ..., qN) = 2C0(p̂1, p̂2, q1, ..., qN , µMad) + CF


⇡
2

3
+ 2 ln2

Q
2

µ
2

Mad

� 6 ln
Q

2

µ
2

Mad

�
. (8)

We observe that (7) su↵ers from large logarithms when µ
2 ⌧ Q

2, while the beam functions
will involve large logarithms for µ2 � q

2

T . To avoid this problem, we solve the RG equation

4

⇠ p

B̄i

�j Īi j

⇠/z pp

Figure 2: Schematic representation of the beam functions that encode the collinear emissions.

of the hard function to evolve it to low values of µ at which the beam function is free of large
logarithms. The result then takes the form

Hqq̄(p̂1, p̂2, q1, ..., qN , µ) = U(Q2
, µh, µ)Hqq̄(p̂1, p̂2, q1, ..., qN , µh) , (9)

and we choose the starting scale of the evolution to be µh ⇠ Q. The analytical expression for
the evolution factor U(Q2

, µh, µ) is given in Appendix A.1.
Let us now discuss the Fourier integral. Despite the fact that it describes low-energy

dynamics, the integral depends on the large scale Q
2 through the collinear anomaly [9]. This

dependence exponentiates in (4) and is driven by the anomaly exponent Fij, that was derived
to two loops in [9] and has now even been determined at O(↵3

s) in [34,35]. The beam functions
Bi are given by a convolution of a perturbative part, describing collinear and soft emissions
at small transverse momentum, with the usual PDFs. The beam functions are illustrated in
Figure 2 and will be discussed in detail below.

In perturbation theory, the functions Bi are polynomials in the logarithm

L? = ln
x
2

Tµ
2

b
2

0

, (10)

and it is useful to follow [29] and factor out their double logarithmic dependence by rewriting

Bi(⇠i, x?, µ) = e
hi(L?,as) B̄i(⇠i, x?, µ) , (11)

where we have introduced the abbreviation as = ↵s(µ)/4⇡. The double-logarithmic exponent
hi(L?, as) is defined as the solution of the RG equation

d

d lnµ
hi(L?, as) = Ci �cusp L? � 2�i(as) (12)

with boundary condition hi(0, as) = 0. For quark-induced processes, we have Ci = CF , while
Ci = CA in the gluon case. The functions B̄i are single logarithmic and it is convenient to
combine the double logarithmic part with the anomaly into a single exponent

e
gi(⌘i,L?,as) =

✓
x
2

TQ
2

b
2

0

◆�Fij(L?,as)

e
hi(L?,as)e

hj(L?,as) . (13)
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 logarithms αsn lnm(qT/Q).



Ingredients for resummation

• NNNLL has parametrically the same accuracy as NNLO 
fixed order! 

• NNNLL resummations have been performed in the past, 
but were missing 4-loop γcusp. 

• now in place, also for n-jet processes
29

Table 1: Different approximation schemes for the evaluation of the resummed cross-section
formulae.

RG-impr. PT Log. approx. Accuracy ∼ αn
sL

k γcusp γV , γφ CV , s̃DY

— LL k = 2n 1-loop tree-level tree-level

LO NLL 2n − 1 ≤ k ≤ 2n 2-loop 1-loop tree-level

NLO NNLL 2n − 3 ≤ k ≤ 2n 3-loop 2-loop 1-loop

NNLO NNNLL 2n − 5 ≤ k ≤ 2n 4-loop 3-loop 2-loop

f(z) must be defined using a subtraction at z = 1 and analytic continuation in η. This

procedure gives rise to plus distributions in the variable 1− z.

The resummed formula for the hard-scattering kernel, Eq. (6.74), is formally indepen-

dent from the hard scale µh and the soft scale µs. As long as µh ∼ M and µs ∼ ω, the

Wilson coefficient C̃V and the soft function s̃DY in Eq. (6.74) are free of large logarithms

and can be evaluated in perturbation theory. (We remind the reader that µs ≫ ΛQCD.) A

residual dependence on µs and µh in the hard-scattering kernel arises precisely from the

fact that the matching coefficients and the anomalous dimensions are evaluated only up to

a given order in perturbation theory. The residual higher-order scale dependence can be

employed to asses the perturbative uncertainty, as we will discuss in detail in Section 6.6.

The dependence on the factorization scale µf cancels formally in the convolution of the

hard-scattering kernel with the parton distribution functions.

The fixed-order expression for the hard scattering kernel in perturbative QCD includes

terms which are singular in the z → 1 limit (plus distributions and Dirac delta functions).

These singular terms can be obtained by setting µs = µf = µh in Eq. (6.74) and by

expanding the formula in powers of αs. In particular this implies that after taking the

derivatives with respect to η, one should take the limit η = 0. We further discuss the

derivation of these approximate formulas in fixed order perturbation theory in Section 6.7.

The resummed expression for the hard-scattering kernel can be evaluated at any desired

order in resummed perturbation theory. Different levels of accuracy require the evaluation

of the matching coefficients and anomalous dimensions at different orders in perturbation

theory; Table 1 summarizes the situation. There are two different ways to label the level

of accuracy at which a resummed formula is evaluated. In the counting scheme of RG-

improved perturbation theory, the LO approximation includes all terms of O(1), the NLO

approximation includes all of the terms of O(αs), and so on. In this framework, the

large logarithms are eliminated in favor of coupling constants at the different scales in the

problem by using the relation

ln

(
µh

µs

)
=

∫ αs(µh)

αs(µs)

dα

β(α)
(6.75)

and expanding in αs(µh) and αs(µs). This relation and the fact that β(α) ∼ α2 also makes

it obvious that one has to count ln(µh/µs) as ∼ 1/αs. Traditionally, one instead expands

– 67 –

Table 1: Different approximation schemes for the evaluation of the resummed cross-section
formulae.

RG-impr. PT Log. approx. Accuracy ∼ αn
sL

k γcusp γV , γφ CV , s̃DY

— LL k = 2n 1-loop tree-level tree-level

LO NLL 2n − 1 ≤ k ≤ 2n 2-loop 1-loop tree-level

NLO NNLL 2n − 3 ≤ k ≤ 2n 3-loop 2-loop 1-loop

NNLO NNNLL 2n − 5 ≤ k ≤ 2n 4-loop 3-loop 2-loop

f(z) must be defined using a subtraction at z = 1 and analytic continuation in η. This

procedure gives rise to plus distributions in the variable 1− z.

The resummed formula for the hard-scattering kernel, Eq. (6.74), is formally indepen-

dent from the hard scale µh and the soft scale µs. As long as µh ∼ M and µs ∼ ω, the

Wilson coefficient C̃V and the soft function s̃DY in Eq. (6.74) are free of large logarithms

and can be evaluated in perturbation theory. (We remind the reader that µs ≫ ΛQCD.) A

residual dependence on µs and µh in the hard-scattering kernel arises precisely from the

fact that the matching coefficients and the anomalous dimensions are evaluated only up to

a given order in perturbation theory. The residual higher-order scale dependence can be

employed to asses the perturbative uncertainty, as we will discuss in detail in Section 6.6.

The dependence on the factorization scale µf cancels formally in the convolution of the

hard-scattering kernel with the parton distribution functions.

The fixed-order expression for the hard scattering kernel in perturbative QCD includes

terms which are singular in the z → 1 limit (plus distributions and Dirac delta functions).

These singular terms can be obtained by setting µs = µf = µh in Eq. (6.74) and by

expanding the formula in powers of αs. In particular this implies that after taking the

derivatives with respect to η, one should take the limit η = 0. We further discuss the

derivation of these approximate formulas in fixed order perturbation theory in Section 6.7.

The resummed expression for the hard-scattering kernel can be evaluated at any desired

order in resummed perturbation theory. Different levels of accuracy require the evaluation

of the matching coefficients and anomalous dimensions at different orders in perturbation

theory; Table 1 summarizes the situation. There are two different ways to label the level

of accuracy at which a resummed formula is evaluated. In the counting scheme of RG-

improved perturbation theory, the LO approximation includes all terms of O(1), the NLO

approximation includes all of the terms of O(αs), and so on. In this framework, the

large logarithms are eliminated in favor of coupling constants at the different scales in the

problem by using the relation

ln

(
µh

µs

)
=

∫ αs(µh)

αs(µs)

dα

β(α)
(6.75)

and expanding in αs(µh) and αs(µs). This relation and the fact that β(α) ∼ α2 also makes

it obvious that one has to count ln(µh/µs) as ∼ 1/αs. Traditionally, one instead expands

– 67 –

�i
<latexit sha1_base64="gC+mB+TOoLVx+yexIj8UOomwKms=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA2lsl20y7dTeLuRiihf8KLB0W8+ne8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqyho0FrFqB6iZ4BFrGG4EayeKoQwEawWjm6nfemJK8zi6N+OE+RIHEQ85RWOldneAUuID75XKbsWdgSwTLydlyFHvlb66/ZimkkWGCtS647mJ8TNUhlPBJsVuqlmCdIQD1rE0Qsm0n83unZBTq/RJGCtbkSEz9fdEhlLrsQxsp0Qz1IveVPzP66QmvPIzHiWpYRGdLwpTQUxMps+TPleMGjG2BKni9lZCh6iQGhtR0YbgLb68TJrVindeqd5dlGvXeRwFOIYTOAMPLqEGt1CHBlAQ8Ayv8OY8Oi/Ou/Mxb11x8pkj+APn8wcE7Y/0</latexit>

H, J, S
<latexit sha1_base64="4f2qTU1jlWkwGQD4WTyV243vULA=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBQym7VdBj0UvxVNF+QLuUbJptQ7PZkGSFsvRHePGgiFd/jzf/jWm7B219MPB4b4aZeYHkTBvX/XZya+sbm1v57cLO7t7+QfHwqKXjRBHaJDGPVSfAmnImaNMww2lHKoqjgNN2ML6d+e0nqjSLxaOZSOpHeChYyAg2VmrXy+iujB76xZJbcedAq8TLSAkyNPrFr94gJklEhSEca931XGn8FCvDCKfTQi/RVGIyxkPatVTgiGo/nZ87RWdWGaAwVraEQXP190SKI60nUWA7I2xGetmbif953cSE137KhEwMFWSxKEw4MjGa/Y4GTFFi+MQSTBSztyIywgoTYxMq2BC85ZdXSata8S4q1fvLUu0miyMPJ3AK5+DBFdSgDg1oAoExPMMrvDnSeXHenY9Fa87JZo7hD5zPH1UgjkE=</latexit>



Transverse momentum spectrum
• At NNNLL, one reaches an 

accuracy of a few per cent 
• 4-loop cusp has 

numerically only very small 
effect 

• At higher qT one matches 
to fixed-order result. 

• Here: NNLO = O(αs2), but 
O(αs3) is known. 

• CuTe only produces 
inclusive spectrum.
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Figure 9: Resummed Z boson spectrum for |y| < 2.4 at
p
s = 8TeV obtained running

the CuTe code [18, 41]. We normalize each order to its default cross section value in the
momentum region shown in the plot and choose µh = MZ .

same accuracy and using the same resummation formalism were already obtained using the
CuTe code [41] in [18]. We have verified that we reproduce these earlier results if we adopt
the same value of the scales and compute to the same order in the improved expansion for
qT ! 0. Version 2 of CuTe includes resummation for the inclusive spectrum up to NNNLL
and performs fixed-order matching up to NNLO.1

In Figure 9 we show the spectrum up to this accuracy. While the corrections are small at
low qT , the higher-order matching corrections at larger transverse momentum become signifi-
cant, about 20%. One also observes that the fixed-order scale bands from varying µ = µf = µr

underestimate the size of the corrections. The value of µh is mainly important for the normal-
ization of the cross section. Choosing µ

2

h = M
2

Z gives a relatively low value for the NLL cross
section, which then increases as one goes to higher orders. Adopting instead µ

2

h = �M
2

Z [43],
the NLL result overshoots and the higher orders give negative corrections. Since the hard
function arises as an overall factor, the choice of the hard scale plays only a minor role for
the spectrum shown in Figure 9. In addition to scale variation, CuTe provides other options
which can be used to estimate uncertainties. One can e.g. keep the higher-order corrections
in the exponent, or expand them out. One can also vary the order of the improved expansion
for qT ! 0, which is implemented up to [↵s(q⇤)]5/2.

What is new compared to CuTe is that our code allows us to implement the ATLAS [32]
cuts on the final-state leptons, which are restricted to have p

`
T > 20GeV and pseudorapidity

|⌘| < 2.4. We focus on the Z resonance region and restrict the invariant mass of the lepton
system to the region 66GeV < m`+`� < 116GeV. In contrast to our earlier work we are

1Version 2.0.2 of CuTe incorporates the results for the four-loop cusp anomalous dimension [42] and the
three-loop anomaly coe�cient [34, 35]. The code thus achieves full NNNLL accuracy.
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CuTeR

Have implemented qT resummation in an event-based 
framework TB, Hager 1904.08325.  

• Reweight tree-level event files from MG5_aMC@NLO  
• Arbitrary (quark-induced) electroweak boson processes 

(W,Z, WZ, ZZ, …) at NNLL + O(αs) 

• Can impose experimental cuts on leptonic final states and 

compute related variables such as φ*
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Figure 10: Comparison of the matched NNLL result to ATLAS data. The experimental
uncertainties (green dots) are below 1% and thus invisibly small, the theoretical ones (blue
bands) are obtained from scale variation, see text.

region. The upper bound was chosen because the unmatched resummed cross section turns
negative at higher values of qT which would lead to unphysical behavior in the unmatched
spectra shown in Figure 8.

In Figure 10 we plot our matched results for the qT and �
⇤ spectra, with the lepton cuts

imposed by ATLAS [32]. The agreement is generally quite good, but at intermediate values we
overshoot a little bit and our cross section is too small in the fixed order region at large qT . Our
fixed-order matching at O(↵s) only includes the leading term for qT 6= 0 and thus has limited
accuracy. The CuTe results shown in Figure 9 show that matching to O(↵2

s) would bring
the cross section into agreement with the data. This is confirmed by [23] who match to the
known O(↵3

s) result [44] and obtain a result which nicely agrees with the experimental data.
In reference [23] the resummation is performed up to NNNLL, which leads to an excellent
description of the data over the entire momentum range. In the context of the fixed-order
computation, let us mention that in the matching scheme (35) with a cuto↵ q0 on the matching
corrections, we could extend the matching with some e↵ort to O(↵2

s). To do so, one would
use the MadGraph5_aMC@NLO to perform a NLO computation of Z + j with p

j
T > q0

and also expand the resummed results one order higher in ↵s to extract ��.
As discussed in the introduction, the variable �

⇤ was constructed as an alternative to qT ,
as it can be measured more precisely. To illustrate their correlation, we show in Figure 11 a
density plot of the cross section in qT and log

10
�
⇤. For a given qT , there is a maximum possible

value of �⇤, which is obtained when the two leptons are produced at �⌘ = 0. Determining
the minimum �� and inserting it into the definition (1), one finds that �

⇤
max

= qT/Q. The
corresponding relation (for Q = MZ) is shown as a dashed red line in Figure 11 and the
red area above the line is kinematically excluded. The largest cross section is found near
the maximum possible value of �⇤ which demonstrates the close correlation among the two
observables. In [45] it was observed that the logarithms in the �

⇤ distribution which arise at
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Figure 12: Matched NNLL result for lepton momenta. We impose p`T > 20GeV and |⌘`| < 2.4.
Left: Lepton transverse momentum in Z boson production at

p
s = 8TeV. Right: The

µ
+ transverse momentum in W

+ production at
p
s = 7TeV. The bands show the scale

uncertainties.
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Figure 13: Matched cross sections for W+
Z production at

p
s = 7TeV. The left plot shows

the total transverse momentum qT , the right one p
Z
T , the transverse momentum of the Z

boson. The bands show the scale uncertainties. The only cut we apply is on the rapidity of
the diboson system, which we restrict to |y| < 2.4.

spectrum. Resummation for diboson production has been studied earlier in the papers [21,
47–50].

5 Conclusions

An important benefit of factorization — obtained using e↵ective field theory or by other
means — is universality: the same low-energy matrix elements typically arise in many di↵er-
ent processes. The prime example in a collider context is provided by the parton distribution
functions which capture the low-energy physics of arbitrary hard-scattering processes. The
same universality is present for electroweak boson production at low transverse momentum.
The accompanying QCD radiation is process independent and described by a Fourier convolu-
tion of two beam functions. In this paper, we have made use of this universality to automate

20
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FIG. 3. The Higgs-boson transverse momentum distribution
matched between FO and SCET. Dashed lines indicate central
scales of mH/2 and matching profile centered at 30 GeV. The
theoretical uncertainties are estimated by taking the envelope
of all scale and profile variations (see text). Ratio plots in
the lower panel presents the scale and profile variation with
respect to NNLO+N3LL (red dashed line).

the level of 1 per-mille, which imposes a strong chal-
lenge on fixed-order calculations in the infrared unstable
small pT region. We have shown excellent agreement be-
tween SCET and NNLOJET in this region, which provides
a highly nontrivial check of both calculations. The fi-
nal matched predictions show a continuous reduction of
scale uncertainties order by order, and are significantly
more precise for small pT . We expect our results will
have an important impact on understanding the detailed
properties of the Higgs boson at the LHC.
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Fig. 1. Comparison of the normalised transverse momentum
distribution for neutral and charged Drell-Yan pair production
at NLL+LO (green), NNLL+NLO (blue) and N3LL+NNLO
(red) at

p
s = 13 TeV for the fiducial volume defined in the

text. The lower panel shows the ratio to the NNLL+NLO re-
sult.
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Fig. 2. Comparison of the normalised transverse momentum
distribution for neutral and charged Drell-Yan pair production
at NNLO (green), NNLL+NLO (blue) and N3LL+NNLO (red)
at

p
s = 13 TeV for the fiducial volume defined in the text. For

reference, the Pythia8 prediction in the AZ tune is also shown,
and the lower panel shows the ratio of each prediction to the
Pythia8 result.
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State of the art is now N3LL + O(αs3) (here called NNLO) matching 

• W, Z, H using RadISH Bizon, Chen, Gehrmann-De Ridder, 
Glover, Huss, Monni, Re, Rottoli, Torrielli Walker ’18 ’19 

• H using SCET Chen, Gehrmann, Glover, Alexander Huss, 
Li, Neill, Schulze, Stewart, Zhu ‘18



Ratio of Z and W spectrum
W-spectrum is important for MW 
measurement. Analysis needs 
extremely precise predictions 

• Experiments use measured Z-
spectrum to tune Pythia 

• Pythia is then used to predict 
W/Z ratio 

A better understanding of the 
uncertainties would be important 

• Ongoing effort to compare and 
benchmark results of different 
resummation codes.
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Fig. 3. Ratios of Z/W+ and W�/W+ normalised di↵eren-
tial distributions at NLL+LO (green), NNLL+NLO (blue) and
N3LL+NNLO (red) at

p
s = 13 TeV. The three lower panels

show three di↵erent prescriptions for the theory uncertainty,
as described in the text.
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Towards NNNNLL
By now even some ingredients for resummation beyond 
N3LL have become available 

• 3-loop dijet hard functions Baikov, Chetyrkin, Smirnov, 
Smirnov Steinhauser ’10, Lee, Smirnov, Smirnov ’10, 
Gehrmann, Glover, Huber, Ikizlerli, Studerus ’10, … 

• 3-loop jet functions: quark Brüser, Liu, Stahlhofen ’18; 
gluon Banerjee, Dhani, Ravindran ’18 

• 3-loop soft function for qT Li and Zhu for EEC, Moult, 
Zhu ’18, for heavy-to-light decays Brüser, Liu, 
Stahlhofen ‘19 

• double-real for 3-loop quark beam function Melnikov, 
Rietkerk, Tancredi, Wever ‘18
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Summary
Have discussed the structure of IR singularities of amplitudes 
with massless particles 

• heavily constrained by 
• soft-collinear factorization, collinear limits,non-abelian 

exponentiation 
• regge limit Del Duca, Claude Duhr, Einan Gardi, Lorenzo Magnea, White 

’11; Caron-Huot, Gardi, Reichel, Vernazza ’17 
• determined by an anomalous dimension Γ 

• known to three loops, logarithmic part to 4 loops 
• Γ is an important ingredient to resummation of n-jet 

processes 
• N3LL + NNLO for weak boson qT spectra!
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Thank you!
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7 Applications

The most important accomplishment of our analysis is that it provides explicit and complete
expressions for the anomalous-dimension matrices needed to perform resummations of large
logarithms in n-jet cross sections with next-to-next-to-next-to-leading logarithmic (N3LL) ac-
curacy. At this order, one resums logarithms of the form αn

sL
k with (n − 2) ≤ k ≤ 2n in

the logarithm of a cross section. This requires that one knows the logarithmically enhanced
terms in the anomalous dimension (the so-called “cusp logarithms”) to four-loop order and
the remaining terms to three-loop accuracy. The appearance of cusp logarithms is a character-
istic feature of anomalous dimensions associated with amplitudes sensitive to Sudakov double
logarithms. Note that N3LL resummation is what is needed to perform a consistent matching
onto NNLO fixed-order expressions for the cross sections, which is becoming state-of-the-art
in perturbative QCD. From our general result (42), we obtain

Γ({s}, µ) =
∑

(i,j)

Ti · Tj

2
γcusp(αs) ln

µ2

−sij

+
∑

R

gR(αs)

[∑

(i,j)

(
DR

iijj + 2DR
iiij

)
ln

µ2

−sij
+

∑

(i,j,k)

DR
ijkk ln

µ2

−sij

]

+
∑

i

γi(αs) + f(αs)
∑

(i,j,k)

Tiijk +
∑

(i,j,k,l)

Tijkl F (βijlk, βiklj;αs)

+O

(
α4
s,α

5
s ln

µ2

−sij

)
.

(79)

Based on our analysis, the terms involving cusp logarithms are now known to four-loop order,
while the remaining contributions in the third line are known to three-loop order.

As a second application, we briefly consider the important case of processes involving only
a small number of external particles. While the form-factor case (n = 2) has already been
discussed in Section 5, we now study the case of three particles (n = 3). This is relevant
for resumming large QCD corrections to important collider processes such as e+e− → 3 jets
(which involves e+e− → qq̄g at the parton level) and pp → H + jet (which involves qq̄ → Hg,
qg → Hq and gg → Hg at the parton level). For the special case of three-particle amplitudes,
many of the multi-particle correlations do not contribute, and other terms can be simplified
using color conservation. We find that the general form of the anomalous dimension in (42)
reduces to

Γ({s}, µ) =
γcusp(αs)

2

[
(CR3 − CR1 − CR2) ln

µ2

(−s12)
+ cyclic permutations

]

+ γ1(αs) + γ2(αs) + γ3(αs) +
C2

A

8
f(αs) (CR1 + CR2 + CR3)

+
∑

(i,j)

[
− f(αs) Tiijj +

∑

R

gR(αs)
(
3DR

iijj + 4DR
iiij

)
ln

µ2

−sij

]
+O(α5

s) ,

(80)
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4-loop Z-factor
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B Anomalous-dimension coefficients and Z-factor

Given a UV renormalized, on-shell n-particle scattering amplitude |Mn(ϵ, {s})⟩ with IR diver-
gences regularized in d = 4−2ϵ dimensions, one can obtain the finite amplitude |Mn({s}, µ)⟩,
in which all IR are subtracted in a minimal way, from the relation [1]

|Mn({s}, µ)⟩ = lim
ϵ→0

Z
−1(ϵ, {s}, µ) |Mn(ϵ, {s})⟩ . (B.1)

The Z factor is related to the anomalous dimension Γ studied in the present paper by

Γ({s}, µ) = −Z
−1(ϵ, {s}, µ)

d

d lnµ
Z(ϵ, {s}, µ) . (B.2)

Up to four-loop order, the solution to this equation was derived in [11, 21]. One obtains

lnZ =
αs

4π

(
Γ′
0

4ϵ2
+

Γ0

2ϵ

)
+
(αs

4π

)2
(
−
3β0Γ′

0

16ϵ3
+

Γ′
1 − 4β0Γ0

16ϵ2
+

Γ1

4ϵ

)

+
(αs

4π

)3
(
11β2

0Γ
′
0

72ϵ4
−

5β0Γ′
1 + 8β1Γ′

0 − 12β2
0Γ0

72ϵ3
+

Γ′
2 − 6β0Γ1 − 6β1Γ0

36ϵ2
+

Γ2

6ϵ

)

+
(αs

4π

)4
(
−

25β3
0Γ

′
0

192ϵ5
+

13β2
0Γ

′
1 + 40β0β1Γ′

0 − 24β3
0Γ0

192ϵ4

−
7β0Γ′

2 + 9β1Γ′
1 + 15β2Γ′

0 − 24β2
0Γ1 − 48β0β1Γ0

192ϵ3

+
Γ′
3 − 8β0Γ2 − 8β1Γ1 − 8β2Γ0

64ϵ2
+

Γ3

8ϵ

)
+O(α5

s) ,

(B.3)

where we have expanded the anomalous dimension and β-function as

Γ(αs) =
∞∑

n=0

Γn

(αs

4π

)n+1
, β(αs) = −2αs

∞∑

n=0

βn

(αs

4π

)n+1
, (B.4)

and similarly for the function

Γ′(αs) =
∂

∂ lnµ
Γ({s}, µ) = −

∑

i

Γi
cusp(αs) , (B.5)

where the cusp anomalous dimensions Γi
cusp(αs) have been given in (67). Through relations

(42) and (67), the coefficients Γn and Γ′
n can in turn be expressed in terms of the expansion

coefficients of the anomalous dimensions γcusp, γq and γg, as well as of the coefficient functions
of the higher-order terms, all defined in analogy with the first relation in (B.4).

We now list the expansion coefficients of the quantities γcusp, γq and γg up to three-loop
order in the MS renormalization scheme. The coefficients of the universal cusp anomalous

24

B Anomalous-dimension coefficients and Z-factor

Given a UV renormalized, on-shell n-particle scattering amplitude |Mn(ϵ, {s})⟩ with IR diver-
gences regularized in d = 4−2ϵ dimensions, one can obtain the finite amplitude |Mn({s}, µ)⟩,
in which all IR are subtracted in a minimal way, from the relation [1]

|Mn({s}, µ)⟩ = lim
ϵ→0

Z
−1(ϵ, {s}, µ) |Mn(ϵ, {s})⟩ . (B.1)

The Z factor is related to the anomalous dimension Γ studied in the present paper by

Γ({s}, µ) = −Z
−1(ϵ, {s}, µ)

d

d lnµ
Z(ϵ, {s}, µ) . (B.2)

Up to four-loop order, the solution to this equation was derived in [11, 21]. One obtains

lnZ =
αs

4π

(
Γ′
0

4ϵ2
+

Γ0

2ϵ

)
+
(αs

4π

)2
(
−
3β0Γ′

0

16ϵ3
+

Γ′
1 − 4β0Γ0

16ϵ2
+

Γ1

4ϵ

)

+
(αs

4π

)3
(
11β2

0Γ
′
0

72ϵ4
−

5β0Γ′
1 + 8β1Γ′

0 − 12β2
0Γ0

72ϵ3
+

Γ′
2 − 6β0Γ1 − 6β1Γ0

36ϵ2
+

Γ2

6ϵ

)

+
(αs

4π

)4
(
−

25β3
0Γ

′
0

192ϵ5
+

13β2
0Γ

′
1 + 40β0β1Γ′

0 − 24β3
0Γ0

192ϵ4

−
7β0Γ′

2 + 9β1Γ′
1 + 15β2Γ′

0 − 24β2
0Γ1 − 48β0β1Γ0

192ϵ3

+
Γ′
3 − 8β0Γ2 − 8β1Γ1 − 8β2Γ0

64ϵ2
+

Γ3

8ϵ

)
+O(α5

s) ,

(B.3)

where we have expanded the anomalous dimension and β-function as
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and similarly for the function

Γ′(αs) =
∂

∂ lnµ
Γ({s}, µ) = −

∑

i

Γi
cusp(αs) , (B.5)

where the cusp anomalous dimensions Γi
cusp(αs) have been given in (67). Through relations

(42) and (67), the coefficients Γn and Γ′
n can in turn be expressed in terms of the expansion

coefficients of the anomalous dimensions γcusp, γq and γg, as well as of the coefficient functions
of the higher-order terms, all defined in analogy with the first relation in (B.4).

We now list the expansion coefficients of the quantities γcusp, γq and γg up to three-loop
order in the MS renormalization scheme. The coefficients of the universal cusp anomalous
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Three-loop coefficients

39

The single-particle anomalous dimensions γi for quarks and gluons (i = q, g) are known
to three-loop order and are given in Appendix B. Explicit expressions for the function
F (x1, x2;αs) and the coefficient f(αs) can be derived from the three-loop results for the soft
anomalous dimension for three-particle amplitudes obtained in the pioneering paper [22]. This
yields

F (x1, x2;αs) = 2F(ex1, ex2)
(αs

4π

)3

+O(α4
s) ,

f(αs) = 16 (ζ5 + 2ζ2ζ3)
(αs

4π

)3
+O(α4

s) ,

(61)

where the function F(x, y) can be expressed in terms of Brown’s single-valued harmonic poly-
logarithms [56, 57]. Defining a complex variable z such that zz̄ = x and (1 − z)(1 − z̄) = y,
one finds that F(x, y) = L(1− z)− L(z), where

L(z) = L10101(z) + 2ζ2 [L001(z) + L100(z)] . (62)

Of the remaining terms in (42), which start at four-loop order, only the coefficients gR can
be determined from presently available calculations. To this end, we exploit the fact that the
anomalous dimension Γ simplifies drastically for the case of n = 2 particles. We obtain (with
i = q, g)

Γ(s12, µ) = −

[
CRi

γcusp(αs) + 2
∑

R

gR(αs)D
R
iiii

]
ln

µ2

−s12
+ 2γi(αs) +O(α5

s) , (63)

where the right-hand side is proportional to the unit matrix in color space, and from here on
we omit the symbol 1 to indicate such terms. For i = q, g these quantities are the anomalous
dimensions of the quark and gluon form factors. The structure

DR
iiii = dabcdR T

a
i T

b
i T

c
i T

d
i = dabcdR

(
T

a
T

b
T

c
T

d
)
Ri

≡ C4(Ri, R) (64)

defines a quartic Casimir invariant, which commutes with all generators in the representation
R of the gauge group. If R is irreducible, then Schur’s lemma implies that C4(Ri, R) is
proportional to the unit matrix. One finds

C4(Ri, R) =
dabcdRi

dabcdR

NRi

≡
d(4)RiR

NRi

, (65)

where the symbol d(4)RiR
was introduced in [48], and NRi

is the dimension of the representation
Ri (with NF = Nc and NA = N2

c −1). For an SU(Nc) gauge theory the relevant combinations
are (we use TF = 1

2)

d(4)FF =
(N4

c − 6N2
c + 18)(N2

c − 1)

96N2
c

,

d(4)FA = d(4)AF =
Nc(N2

c + 6)(N2
c − 1)

48
,

d(4)AA =
N2

c (N
2
c + 36)(N2

c − 1)

24
.

(66)
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