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 Data set
Energy deposition in calorimeter as pixel intensities for a 3D image
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● Compact Linear Collider CLIC: Proposed linear particle accelerator [6]
● Open data set developed for ML applications: Events as selected cells 

around the barycenter of particle showers
● 200,000 Electron events from 10 to 500 GeV simulated with Geant 4 [7] : 

Event → 25 x 25 x 25 image → 15, 625 cells 
● 120,000 Electron events from 100 to 200 GeV simulated with Geant 4: Event 

→ 51 x 51 x 25 image → 65, 025 cells 
● Detector response as 3D images

○ Images are sparse
○ Intensities cover a large spectrum over seven orders of magnitude

Data set
CLIC Calorimeter

http://clicdp.web.cern.ch/

http://cds.cern.ch/record/2254048

Ecal Hcal

Incoming Particle

With Primary 

Energy
ECAL 
Cells

http://clicdp.web.cern.ch/
http://cds.cern.ch/record/2254048
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 3DGAN
Three dimensional Generative Adversarial Networks 
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3DGAN
Architecture

Latent space

Primary particle:
● Type
● Energy
● Energy + angle

Generated 
Image

Image

Discriminator 
loss

Evaluating loss

Evaluating the 
performance by agreement 
to  labels and Physics 
related constraints
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 Evaluation
Three dimensional Generative Adversarial Networks 
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● Multiple criterion 
● Detailed GAN vs GEANT4 comparison (More than 200 Plots! ) for 

multiple features:
○ Shower Shapes
○ Sampling Fraction
○ Discriminator Primary Energy regression (dense layer)
○ Position of max energy deposition
○ Hits above a threshold (0.0003 GeV)
○ fraction of energy deposited in different parts of the shower
○ Angle measured from shower
○ Discriminator real/fake probabilities (dense layer)
○ Shower moments
○ Sparsity
○ Cell energy histograms
○ Correlation between different quantities
○ Projections in x, y, z planes to access visually

● Image Quality Analysis

Detailed Analysis
Evaluating and tuning performance
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GAN generated events
G4 vs. GAN events 2D histograms for energy deposited in x, y, z planes

G4 GAN

● GAN vs. G4 with same Primary Particle energy and angle

G4 GAN G4 GAN 

147.49 GeV and 87.83 Degrees 188.95 GeV and 62.96 Degrees111.07 GeV and 115.54 Degrees



10

Physics Quantities

● Sampling Fraction
● Hits
● Shower Shapes:

○ Energy deposited 
along x, y and z axis

For primary particle energy 100-200 GeV and angle in bins around 62, 90 and 118 
Degrees

62 Degrees 90 Degrees 118 Degrees
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● Much less energy 
deposited in tails

● The intensity is also 
lower

Disagreement in tails for the shower shapes 
in transverse direction
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GAN generated 
images are less 
sparse but are 
compatible within 
error bars

Sparsity
GAN vs. G4
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Correlations
G4 vs. GAN
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Reasonable agreement to G4 
across seven orders of 
magnitude

Cell energies
Energy deposited in individual cells
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● GAN is a Minmax game with multiple objectives thus it is very difficult to 
assess performance on the basis of losses

● A single figure to assess performance
○ Compare results of different hyperparameter settings
○ Assess best weights from training results 

● Figure of merit to takes into account mean relative errors for:
○ Shower Shapes
○ Moments
○ Measured angles
○ Sampling Fraction

● Wasserstein Distance between these quantities (work in progress)
○ Wasserstein distance for more than one dimension is NP hard
○ Gromove Wasserstein is being investigated

Optimization Function
Validation
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● Structural Similarity Index or SSIM [9] is used to assess similarity between 
images commonly used in denoising applications

● For GAN SSIM has also been used to measure diversity between generated 
images

● SSIM was computed for images from same energy and angle bin:
○ SSIM G4 to G4 = ~0.983
○ SSIM GAN to GAN = ~0.981
○ SSIM G4 to GAN = ~0.98

Image Quality Analysis
Structural Similarity Index, MSCN Coefficients

SSIM as training progresses

Epochs
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 Future Plans……..
Generalization
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● Generalize the approach so that 3DGAN can be trained and tuned 
automatically to data from different types of calorimeter

● Challanges
○ Potentially large number of possible configuration

■ Training related Hyper parameters:
● e.g learning rates, loss weights, optimizer, batch size, latent size etc.

■ Architecture related parameters:
● Number of layers, number of filters, filter sizes, use of dropout, batch normalization, 

pooling and upsampling
○ Long training times

● Proposed approaches:
○ Hyper parameter scan using distributed training [11]
○ Training and Optimization at the same time using evolution

Generalize 3DGAN
Generalization Challenges
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● Genetic Algorithm will be 
used to train a Neural 
Network

● Generic Tool for different 
detectors 

● Global instead of local 
minima

● Complex and indirect cost 
functions are possible

● Highly Scalable

Evolutionary Approach
Genetic Algorithm to train and optimize neural networks at the same time

chromosome

Convolutional
Neural network

Exit after n generations
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● Network Size: 
○ Trainable parameters in millions for 3DGAN model
○ Deep GA [12] has been able to train successfully over four million parameters 

● Big Data: 
○ Large data for evaluation on entire training data.
○ Batch training has been successfully implemented LEEA [13].

● Required Resources: 
○ Due to network and data sizes HPC resources will be essential.

● Architecture Optimization: 
○ Design mechanism to offer greater flexibility
○ Non conventional connections between convolutional filter nodes EXACT [14].
○ Indirect Weight encoding similar to HyperNEAT [15] 

● Adversarial Training: 
○ Simultaneous training of two networks competing with each other
○ Evolutionary approach is frequently used in multiplayer games

● Inexact solution: 
○ Evolutionary approach can discover neighbourhood of global optima but cannot arrive at exact 

solution of a local search
○ A hybrid approach can incorporate SGD as a callback after no improvement for predefined number 

of generations to help arrive at exact solution.

Challanges
GA for GAN
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● This approach will be implemented in three phases:
● Initially we will reduce the problem complexity and focus on genetic 

training by:
○ Converting 3D data to 2D images, slicing the detector volume along the direction 

of particle propagation.
○ focusing on the discriminator network only
○ Fixed architecture

● During a second phase architecture hyper-parameters will also be 
encoded in chromosomes and optimised

○ Test indirect encoding for weight encoding to reduce the number of parameters 
and stabilize training.

● Finally the complete GAN scenario will be implemented.

Implementation
Step by step implementation
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Thank you !!! 
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Bonus Slides
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● shower width 
● Fraction of energy 

deposited in first, 
second and third part 
of shower to total

● Shower shapes in log

Physics Quantities
Primary particle energy 100-200 GeV and angle 60-120 degrees
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● Convolutional Neural networks use the idea that filter 
kernels can be used to extract interesting features from 
an image. 

● Digital filters can perform operations like smoothing 
and edge detection etc.

● Image is convolved with a filter kernel
● The weights in a kernel are meaningful in their relation 

with other weights and its position
● If the filter size is changed the trained weight is not 

meaningful any more
● Thus instead of direct coding, indirect coding can be 

used. Thus the underlying relation of weights will be 
learnt instead of fixed values

● Hyper Neat uses indirect coding for neural network 
evolutionary training as Compositional Pattern 
Producing Networks CPPNs

● Same concept can be extended to CNN

Indirect Weight Encoding
Evolving Filters

Some commonly used edge detection filters 

HyperNEAT  CPPN
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● A pool of random parent chromosomes is created
● Fitness for each parent is evaluated
● Offsprings are obtained (mutation and/or cross over)
● Each thread evaluates a single child
● As soon as child is evaluated the fitness is compared with lowest 

fitness of current pool
○ If child fitness is same or higher the child replaces the parent with lowest fitness

● Different children can take different time for evaluation
● No need for communication between threads
● There will be no loss in performance with number of threads

Asynchronous Update
Genetic Training


