
LINTToRoot
M. Proffitt, E. Torro, G. Watts
(UW/Seattle)

IRIS-HEP Topical Meeting

Feb 25, 2019

(apologies for the style of this talk… I got going and couldn’t stop)

IRIS-HEP
http://iris-hep.org



G. WATTS (UW/SEATTLE) 2

Declarative Analysis is an Old Concept

Specify what you want to do not how you want to do it

SQL, based on a CS paper from 

1970, has been around since the 

early 70’s.



G. WATTS (UW/SEATTLE) 3

Plot Missing 𝐸𝑇 for events with 
2 jets with 𝑝𝑇 > 40 GeV and 
having at least 2 2 GeV tracks 
within Δ𝑅 < 0.2 for full Run 2 

analysis

Data Model

CPU Resources

GPU Resources

DOMA

In
frastru

ctu
re



G. WATTS (UW/SEATTLE) 4

Plot Missing 𝐸𝑇 for events with 
2 jets with 𝑝𝑇 > 40 GeV and 
having at least 2 2 GeV tracks 
within Δ𝑅 < 0.2 for full Run 2 

analysis

The Target
• The Missing 𝐸𝑇 attribute of the event object
• Could be a tuple (Missing 𝐸𝑇, 𝑁𝐽𝑒𝑡𝑠, etc)

• Implied loop over events

Selection

Note:
• Implied double loop

• Then over jets
• Then over tracks

• Matching between levels
The Action
• Have to know how to plot
• Build a new TTree
• Generate a csv or numpy array
• Something new?

Details
The Front End (Analysis Language + UI)

Imagine adding the word Calibrated



G. WATTS (UW/SEATTLE) 5

The Backend (Analysis System)

Details

Data Model

CPU Resources

GPU Resources

DOMA

In
frastru

ctu
re

Data Model
• How data is structured
• How to code the “query”

DOMA
• Where to find the data
• Caching of intermediate results
• Picking up previously cached results

Scheduler
• Where to find the data
• Caching of intermediate results
• Picking up previously cached results

Large local 
resource or 

on your 
laptop?
Both?



Production System 
Analysis Files

Scan data, explore 
with histograms, 
making final plots

Fitting, 
manipulation, limit 

extrapolation

Archiving, 
publication, 

Reinterpretation,
etc.

Capture & Reuse

Analysis Systems, analysis & declarative languages
(underlying framework)

6

LINQToROOT

LINQToROOT

https://github.com/gordonwatts/LINQtoROOT

https://github.com/gordonwatts/LINQtoROOT


In Memory/File Layout

Structured Query

Query with Domain Knowledge

numpy, pandas, 
RDataFrame, LINQ

TTree, numpy, 
jagged array

D
o

m
ain

 Kn
o

w
led

ge

The electron is a first class object, 
specific to class of experiment.

Data model contains object 
definitions, data structure is part of 
the language, experiment agnostic

Data model contains all information, 
field and experiment agnostic

7



events
.Select(e => e.Data.eventWeight)
.FuturePlot("event_weights", "Sample EventWeights",

100, 0.0, 1000.0)
.Save(hdir);

What we want to plot

1D Histogram Declaration

Save the plot in a file

Note: There is no explicit loop!

I chose Microsoft’s C# 
language due to built in 
SQL-like language, LINQ:
• Strongly typed
• LINQ is extensible to 

new backends by design
• Automatic tooling 

support
• Fully capable language 

with lots of Open 
Source libraries

• Statically typed
• Based on paper by CS 

theorist (who also came 
up with Reactive 
Programming)

C# and LINQ: The UI

8



events
.Where(e => e.Jets.Where(

j => j.pT > 40.0 
&& e.Tracks.Where(t => ROOTUtils.DeltaR2(j.eta, j.phi, t.eta, t.phi) < 0.2).Count() >= 2)

))

.Select(e => e.MissingET)

.FuturePlot(“met", “Missing ET for Events with 2 good jets", 100, 0.0, 1000.0)

.Save(hdir);

C# and LINQ: The UI – Three Implied Loops

9

1

2

3



G. WATTS (UW/SEATTLE) 10

LINQ Operations Implemented

Sequence Operations

Name Operation

Select Apply a function to each object of the 
sequence rendering a new sequence 
(transformation): sequence of jet →
sequence of jet.pt()

SelectMany Unroll a loop: sequence of jet →
sequence of tracks near each jet

Where Filter: sequence of jets with pt > 50 GeV

OrderBy Sort by some function of each object in 
the sequence (ascending or descending)

GroupBy Group sequence into a sequence of 
sequences (jets between 10 and 40 GeV, 
40 and 90 GeV, etc.).

Name Operation

Aggregate Accumulate, used as the basis of many other 
terminals: filling a histogram, calculate 
average, sum, etc.

All True if every element of a sequence satisfies 
some condition

Any True if any element of a sequence satisfies a 
condition

Count Number of elements in a sequence

Empty True if a sequence has no elements

First First element of a sequence

Last Last element of a sequence

Max, Min Max or min value of some function over a 
sequence (you can get the object that 
satisfied this)

Skip/Take Skip n elements or take n elements, or by a 
condition (take until/skip while)

Complete List of LINQ Operations

Terminal Operations

https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable?view=netframework-4.7.2


C#, UI
(all text!)

Query ->
Abstract Syntax Tree

Cache

AST Remapping,
AST -> ROOT/C++

ROOT/C++ -> Plots, 
TTrees, etc.

Dataset -> Files

Data Flow Through LINQToROOT

11



C#, UI
(all text!)

Data Flow Through LINQToROOT

12

• Needs to be 100% text (IMHO!!)
• Easy to compose streams of data and selections

• Too easy? 1000’s of histograms
• Provides for leaky abstraction

• Here: including arbitrary C++ code
• Allows 1000’s of plots to be made and results manipulated with 

futures
• C# is not so strong with this (monad hell)

• LINQ is based on a Data Manipulation Language foundation, so is 
quite complete
• Functional
• Histogram filling is an Aggregate step
• Feeds the whole OO was the largest mistake in the last xx 

years mythos.
• Full programming language allows for manipulation of 

histograms (do not want multistep analysis if can help it!)
• Strongly Typed!!!! No text strings, but this does cause some pain.



Query ->
Abstract Syntax Tree

Data Flow Through LINQToROOT

13

• The AST contains all the information for the query
• Source dataset
• All selection cuts
• Final desired product (a histogram, TTree, etc.)
• Any data

• A histogram that is used to re-weight events
• AST is unique for a query, it contains no “opaque” code

• This does have restrictions on what type of C# code you can 
use.

• C# supports generating AST for lambda functions as part of 
the language standard. This is a key feature to make this 
work.

• AST (and C#) expressive enough to do raw ATLAS xAOD.
• Vision: cut/paste text representation of AST into tool and it 

generates the code (Data Preservation, Jupyter notebook to 
repro a plot, etc.). A Juypter Notebook…

• AST – could be sent over wire to Analysis System Server.



Cache

Data Flow Through LINQToROOT

14

• The Cache uses the AST as a key
• Product is stored (histogram in a ROOT file, csv file, etc.)
• Look up and load was less than 10 ms.

• Bulk of time was translating ROOT histograms to a hash 
when they are part of the AST

• And opening and loading a ROOT file (every histo was stored 
in an individual file)

• Rerunning 1000 plots still took 4-5 minutes (still too slow).
• Cache worked across different code bases as long as AST 

matched
• Was localized to a single machine (unfortunately).
• Obvious place to work with DOMA folks to understand how to do 

this better



AST Remapping,
AST -> ROOT/C++

Data Flow Through LINQToROOT

15

• Remapping performs arbitrary transformations on the AST
• Take a flat ntuple and make it look like it has objects 

(electron pt, eta, phi are separate branches, but in C# can 
loop over electrons and look at pT, etc.).

• Important to let user code in way that promotes “physics” 
thinking and the backend to run as efficiently as possible.

• Original reason: our group was writing out flat ntuples and 
that drove my brain nuts.

• Many other transformations possible, but not explored.
• AST’s from different queries can be combined to make scan over 

data more efficient
• AST’s can be optimized (e.g. loop invariants, common 

calculations). This is where most of my bugs existed and bulk of 
unit tests (~300 or 400).

• C++ code written using the visitor pattern on the AST.



Dataset -> Files

Data Flow Through LINQToROOT

16

• When I ran at University of Washington or at CERN I’d get the 
same thing
• Even though the files were located on different computers

• Tools to copy datasets
• Tools to submit jobs to take production skims and turn them into 

flat ntuples
• Allowed me to track, with git, analysis from production 

system to plots
• This was an ad-hoc system!

• Obvious place to work with DOMA folks and make 
something that works well



ROOT/C++ -> Plots, 
TTrees, etc.

Data Flow Through LINQToROOT

17

• Multiple backends
• Run on my windows machine
• Run on a Linux partition in my windows machine
• Run on Linux via SSH
• Run on multiple Linux machines (e.g. a really simple 

PROOF).
• AST told you what leaves were going to be touched, so could pre-

configure.
• For the most part, the system was very simple.
• If the C++ didn’t compile, I considered that a bug in LINQToTTree

• The UI (or C#) should catch all errors.
• This was to help prevent the abstraction from leaking
• Also… C++ compiler error messages…
• Mostly because my optimizer had bugs in it



G. WATTS (UW/SEATTLE) 18

Where to next?

See full example

• Can this be done in python?
• Can a similar language drive an xAOD, 

Flat TTree, and columnar pandas like 
analysis?

• Confident of the first two
• Python has different idioms and abilities 

vs. C#
• Can the UI be made concise and 

clear? 

• Can this be done in python?
• Can a similar language drive an xAOD, 

Flat TTree, and columnar pandas like 
analysis?

• Confident of the first two
• Python has different idioms and abilities 

vs. C#
• Can the UI be made concise and 

clear? 
• Can an AST fully express queries?

• Over the wire?

• Have just started a github repo to explore 
this.

• Prototype quality code
• Hope to have rough answers to most 

questions in a month or two

• Query in a simple AST
• Runs full ATLAS environment in docker
• Exports a root file and uses uproot to 

import it as a Pandas dataframe

https://github.com/gordonwatts/BDTTrainingAnalysisLanguage/blob/master/Example-ImportIntoPandas.ipynb
https://github.com/gordonwatts/BDTTrainingAnalysisLanguage


G. WATTS (UW/SEATTLE) 19

Final Thoughts

• I am a firm believer in this approach
• It is definitely not without its problems
• For me this started as a grumpy old 

professor research project: make it easy!
• I think we must move towards splitting the 

analysis language and server
• Common protocol for the field?
• Even locally (everyone can run docker)

• C# as a choice
• One of the most expressive imperative 

OO languages I’ve used (LINQ, pattern 
matching in code, garbage collected)

• Availible in Linux – but known well by a 
minority of physicists

• Unfortunately, no other language has the 
proper set of features built into the 
language standard

• High level specification of analysis language
• DOMA experts can work on back ends
• Anyone can take advantage of their own 

language if they want
• Allows independent advancement
• AL could be quite powerful outside of HEP 

analyzing structured data
• Pain Points

• 4-5 minutes to re-run 1000 histograms 
too slow

• Histograms
• Common axes as building blocks
• Change title or axis label and binary 

representation changes (caching).
• Cache was one machine only
• What if you want to change a base line 

cut and look at one histo?
• That takes 20 minutes, but all 1000 

will change, and now you are looking 
at 5-6 hours



Backup



Sense of Scale

Number of events (signal + background + control) ~ 2 billion

GRID Data Samples ~ 200

Size of input files 1-2 TB

Number of leaves in processed ntuples ~340

Plots made per job ~400-800

Number of users 1

Number of Developers 1

A small analysis by HL-LHC 
standards…

But a decent sized one for Run 1 
and Run 2

Published 2 papers and 2 ATLAS 
CONF notes in part using this tool.

3

21


