Detector development

Samo Korpar, Gregor Kramberger

University of Maribor, Jožef Stefan Institute Ljubljana RECFA visit to Ljubljana, 5 April 2019

Outline:

- A bit of R&D history
- R&D activities
- Photodetector lab
 - RICH detectors development
 - Photodetectors characterization
 - FE electronics
 - Applications
- Silicon detector lab
 - Infrastructure
 - Radiation hard sensors
 - Timing detectors
 - Diamond detectors, depleted CMOS

Photodetector R&D and Belle II & LHCb RICH upgrade activities

Photodetector lab R&D

- Development and characterization of photodetectors for particle identification (PID) - Ring Imaging Cherenkov (RICH) counters
- Photon detectors for HERA-B RICH
 - Csl detector
 - TMAE detector
 - multi-anode PMTs
- Photon detectors for Belle II aerogel RICH
 - MPPC (SiPM)
 - HAPD
 - MCP PMT
- Applications (TOF-PET, 90Sr detection)

Photodetectors for HERA-B RICH

- radiator C_4F_{10} (n=1.00137)
- Cher. angle 52.4 mrad (β = 1)
- π/K Cher. angle difference
 © 50 GeV/c → 0.9 mrad
- mirror radius 11.4 m
- Main challenge for photodetectors high occupancy $\approx 5 MHz/cm^2$
- spherical + planar mirrors move photon detector away from magnet and particle tracs
- optical demagnification telescope
- use of multi-anode PMTs

Photodetector R&D for HERA-B RICH

- first large area MWPC with CsI photocathode developed at JSI
- fails at high rate operation by few orders of magnitude
- tests of proportional counter array with TMAE developed at DESY
- tests of aging and rejuvenation of smaller prototype developed at JSI
- fails at aging by few orders of magnitude
- first large deployment of multi-anode
 PMTs produced by Hamamatsu
- characterization of MA-PMTs: single photon detection efficiency, aging tests, base board development ...
- selected for the HERA-B RICH

Success of HERA-B RICH

- very clear rings
- only few noise hits with ~30k
 read-out channels

- Single photon resolution:
- σ_0 = 0.8 mrad for fine granularity region (R5900-M16 tubes)
- σ_0 = 1.0 mrad for coarse granularity region (R5900-M4 tubes)
- Paved the way for later RICH detectors of COMPASS and LHCb experiments

Belle II ARICH detector

- proximity focusing RICH to fit the tight available space
- aerogel radiator, $n \approx 1.05$
- π/K Cher. angle difference
 @ 3.5 GeV/c → 30 mrad
- Main challenge for photodetectors –
 strong magnetic field 1.5 T
- new photosensor hybrid avalanche photodetector (HAPD)

• new double layer focusing aerogel radiator

NIM A548 (2005) 383, NIM A553 (2005) 64

End-cap PID: focusing aerogel RICH - ARICH

Photodetectors for ARICH

- micro-channel plate (MCP) PMT, planacon from Photonis (Burle)
- study of excellent timing properties → proposed combination with TOF based on Cherenkov light from PMT window
- modest collection efficiency
- concerns about aging at the time
- silicon photomultiplier SiPM
- high photon detection efficiency
- excellent timing properties
- large dark-count noise equivalent to single photon signals
- immunity to magnetic field
- first use of SiPM for RICH detector
- dark-counts strongly enhanced by nonionizing radiation damage

Photodetectors R&D for ARICH

- hybrid avalanche photodetector HAPD
- high photon detection efficiency
- excellent photon counting
- proximity focusing configuration → operation in the magnetic field with limitation
- APDs sensitive to radiation damage
- new type of photosensor
- selected for the ARICH

Characterization of photodetectors

- several setups for photodetector characterization:
- 2D, 3D stages for position dependent characterization
- library of modular electronics (VME, CAMAC) for pulse

height and timing measurements

- different types of light sources:
 - pico-second lasers
 - LED sources
 - spectrometers
- climate chamber for tests to $-70^{\circ}C$
- study of position dependent efficiency, timing, charge sharing, cross-talk, photoelectron backscattering ...

5. 4. 2019 (slide 10)

10

Development of front-end electronics for ARICH

- front-end electronics is an integral part of the detector and we are equipped for design, prototype board assembly, rework and tests (ERSA rework station, manual pick & place, reflow own)
- irradiation tests of the electronics components, boards
- ARICH front-end board was design @JSI and produced at local company KENS
- radiation hardness of the board was tested at the JSI reactor including the tests of SEU in FPGA

SiPM R&D for future RICH upgrades - Belle II, LHCb

- continuation of development of SiPM photodetector for future experiments
- tests new type of SiPM arrays + light concentrators
- compact module designs
- study of photon detection efficiencies after neutron irradiation
- integration with available electronics
- evaluation in the beam tests

ring in Cherenkov space

theta Cherenkov

Technology transfer - applications

- study of TOF-PET based on Cherenkov light production in PbF_2 and MCP-PMTs, SiPMs
- excellent timing < 100 ps with 15mm crystals

NIM A654(2011)532

• detection of $^{90}_{38}Sr$ through the fast electron from $^{90}_{39}Y$

• pure beta emitter – can not b detected by gamma detectors

coincidence detection with MWPC and Cherenkov light

from aerogel to discriminate against background

NIM A353(1994)217;NIM A595(2008)278

time [ns]

Semiconductor Detector R&D and HL-LHC upgrade activities

Activities

Research in semiconductor particle detectors and dosimetry sensors

ATLAS upgrade (JSI activities – covered by ATLAS talk)

- Beam Condition Monitor (diamond detectors)
- Radiation monitoring (dosimeters)
- High Granularity Timing Detector (LGADs)
- ITk (strip sensors, depleted CMOS)

R&D Collaborations for HEP (upgrade of LHC, Future Circular Collider) and Nuclear physics

- RD50 Radiation hard semiconductor devices for very high luminosity colliders (previously in RD39, RD48)
- RD42 CVD Diamond Radiation Detector Development
- Dosimetry (PIN, MOS-FET and diamond)

Infrastructure: JSI semiconductor Lab

Established laboratory for studies of position sensitive semiconductor detectors:

- Lab Techniques (probe stations, Scanning-TCT, Cryo-TCT, Timing resolution Setup, Multi-Ch. charge collection)
- Detectors simulation software KDetSim.org (a 3D ROOT based software)
- KARTEL "Mimosa" based beam telescope with full software analysis
- Infrastructure (wire-bonders, CAD/CAM workshop, clean room)

Scanning-Transient Current Technique(pioneers)

- Used by many laboratories around the world
- Commercialization through Particulars Ltd.

Investigation of Irradiated Silicon Detectors by Edge-TCT, IEEE Trans. Nucl. Sci. **57** (2010) 2294.

KARTEL Beam Telescope

- 6 Mimosa planes with FEI4 for anchoring tracks
- used by RD42, ATLAS (HVCMOS)

Synchronized analysis of test beam data with the Judith software, NIMA 765 (2014) 140.

Infrastructure: JSI Irradiation facility

TRIGA Mk. 2 type

- Built 1961
- 250 kW max
- TID at 250 kW
- $^{\sim}1 \text{ kGy }/10^{14} \text{ n}_{eq}\text{cm}^{-2}$
- well known hardness factor 0.9 (>100 keV)
- <10% accuracy

Reference irradiation facility for HEP – similar spectrum of neutrons than those at LHC (well known spectrum, regulary calibration checks, known conditions, established procedures)

Different irradiation channels which allow irradiations to extremenly high fluences up to $10^{18} \, neq/cm^2$:

- 3 vertical for samples up to 6 cm in diameter with fluxes: 1.54, 3.57, $6 \cdot 10^{12} \, neq/cm^2 s$
- tangentional channel (130 \times 200 mm^2) 4 \cdot 10¹¹ neq/cm^2s

AIDA 2020 facility – widely exploited by all LHC experiments : 514.5 units delivered in 98 projects, approx 580 irradiations (ALICE 1%, LHCB 2%, CMS 18%, ATLAS 26%, RD 49%, 4% others)

R&D: Radiation hardness of position sensitive detectors

Very active collaboration within RD39,48 and 50:

- annealing studies
- trapping measurements in many materials (>150 citations)
- bias effects on long term operation
- studies of multiplication dependence on hit position, electrode configuration, fluence, bias

First direct observation of charge multiplication in irradiated silicon detectors

NIM A603(2009)263

Modelling of electric field in silicon micro-strip detectors irradiated with neutrons and pions, 2014 JINST 9 P10016

R&D: timing detectors, LGADs and 3Ds

Technology developments and first measurements of Low Gain Avalanche Detectors (LGAD) for high energy physics applications, Nucl. Instrum. Methods Phys. A (2014)

Radiation effects in Low Gain Avalanche Detectors after hadron irradiations, JINST Vol. 10 (2015) P07006. Radiation hardness of thin low gain avalanche detectors, Nucl. Instr. and Meth. A 891 (2018) 68.

Beam test results of a 16 ps timing system based on UFSD, NIM A850 (2017) .

Development of timing detectors for HGTD of ATLAS - 30 ps time resolution for 1.3x1.3 mm² large pads

Low Gain Avalanche Detectors for timing application at very high fluences – two problems:

- Gain layer disapperance with fluence in LGADs (acceptor removal identified as the main cause)
- Fill factor importance for small pads (no gain region between pads)

4D tracking detectors utilizing small cell 3D detectors (RD53, 50x50 μm²)

- -100 % fill factor
- -more radiation hard

Timing performance of small cell 3D silicon detectors, arXiv:1901.02538v2 [physics.ins-det]

April 5, 2019

RECFA visit to Ljubljana **5. 4. 2019**(slide 19)

R&D: Depleted CMOS detectors

Active in ATLAS R&D depleted CMOS activities:

- mostly concentrated on radiation effects (acceptor removal, oxide effects)
- studies of passive and active structures (Edge-TCT as a main tool)
- Simulations and test beam studies
- development of readout systems for MAPS

Test beam of irradiated TowerJazz ATLAS prototype

Evolution of substrate properties with

R&D: Diamond detectors

Activities within RD42 collaboration and ATLAS DBM/BCM':

- radiation hardness (mainly neutron damage)
- investigation of charge multiplication in single crystalline CVD diamonds (Nucl. Instr. Meth. Volume 841 (2017))
- Two Photon Absorption TCT studies
- test beam studies for ATLAS-BCM'

TPA - TCT in scCVD diamond

R&D: Dosimetry sensor developments

- MOS-FET dosimetry for HL-LHC/ ATLAS and medical applications (with partner Bolu University, Turkey)
- Diamond dosimetry for medical applications radiotherapies (within RD42)

MOS-FET $V_T \propto t_{OX}^2 \cdot D$

n

Present ATLAS-ID radiation monitor board

JSI X-ray machine for calibration

Current R&D: development of dosimetric MOS-FETs (NürFET)

- with different sensitives/ranges (oxide thicknesses 40,60,80,100,400,800 nm), 6" production – several 100k of dosimeters/wafer
- with boron layer above oxide for neutron dosimetry
- with different dielectric materials between the channel and gate (fading/sensitivity)

Summary

- Detector R&D for experimental particle physics has a strong tradition.
- At JSI we have set up an infrastructure for R&D of photosensors, semiconductor detectors and neutron irradiation studies
- Contribution to detectors at the energy (ATLAS) and luminosity frontier (Belle II)
- R+D efforts in collaboration with the Slovenian industry, successful transfer of technology

5. 4. 2019

(slide 23)

Applications in medical and environmental physics

BACKUP SLIDES

A bit of history

Photodetectors for HERA-B RICH

- radiator C₄F₁₀
- ref. index 1.00137
- Cher. angle 52.4 mrad ($\beta = 1$)
- π/K Cher. angle difference
 © 50 GeV/c → 0.9 mrad
- mirror radius 11.4 m

Design and production of ... components

