UW Work In AS

M. Proffitt, E. Torro, G. Watts (UW/Seattle)

People

- Gordon
 - Worked extensively in Data Preservation and Analysis Languages
 - Member of the ATLAS and MATHUSLA experiments, as well as DZERO.
 - (and AMY, but that is loooooooong ago!)
- Emma Torro
 - Post-doc at UW, ATLAS and MATHUSLA
 - Analysis and Trigger expert, has helped design several analyses, and has helped manage oldschool C++ analysis framework
 - Officially joins IRIS-HEP effort in a month
- Mason Proffitt
 - Graduate Student at UW, ATLAS and MATHUSLA
 - Worked on b-tagging in ATLAS (uses python analysis ecosystem)
 - Also expert at analysis in C++
 - Joined IRIS-HEP effort on January 1.

Some Documents

- An attempt to develop an 'intellectual framework' to think about analysis languages and systems.
 - Document: <u>Analysis Language Use Cases</u>
 - What processing steps are required in a LHC/HEP experiment?
 - Example queries that a query system needs to support
 - These are use cases that we would want our analysis language to be able to handle cleanly.
 - We need to add more of these! Help welcome!
 - Slides we've started
 - <u>Analysis Systems Global View</u> slightly updated slide from the kick off meeting that tries to put AS in the grand context
 - <u>Analysis Language Hierarchy</u> attempt to classify the various types of analysis languages out there (along just one axis so far).
 - <u>Analysis System Context</u> Crude attempt to place roles for analysis languages, Physicist Interface, and the analysis system.
- All documents are rough, and all welcome contributions
- To help us (UW??) organize our thinking when relating to the already existing large body of work.

A LINQ Based Analysis Language

- Prior work was based on C#'s ling library
 - A set of operators of sequences of events, jets, tracks, etc.
 - Plotting, producing output TTree's
 - Backend ran only on flat ROOT TTree's
 - Used in several published analyses.
- New: Prototype in Python to answer several questions:
 - Can we do this in python in a reasonable way?
 - Can the same frontend language handle flat ROOT TTree's, columnar awkward arrays, and xAOD's as input?
 - Can an Abstract Syntax Tree (AST) contain the complete information for a query
 - E.g. is it expressive enough to be the over-the-wire language?
 - Emma and Mason also working on this effort.
 - Hope to have initial framework to answer some of these questions by HOW.
 - Prior experience tells says almost certainly yes for all but the columnar analysis... that will take some showing to prove.

Current State

- <u>Repro on github in gwatts' private</u> <u>area</u>
 - Goal: be able to write out the training I need for a full Run 2 analysis I'm working on with Emma and Mason.
- Current status:
 - Runs on ATLAS xAOD's
 - Uses docker to extract data
 - Writes it to a ROOT file, and then returns that as a pandas Dataframe.
 - Can run in a Jupyter notebook (!!)
 - Note: running xAOD loop in a notebook like this is just... weird in a very good way.
 - But... this is basically all it can do.

👰 gordonw	ratts Use fname rather than hard-coded string		ce16b22 7 days ago
contributor			
08 lines (6	507 sloc) 23.1 KB	Raw Blam	e History 🖵 🖍 🕅
	Import into Pandas from an ATLAS		
	This is a sample script that uses the ad-hoc analysis library to extract	t jet pt's from an ATLAS xAOD file.	
	Setup and Config		
In [1]:	<pre>fname = r"file://G:/mc16_13TeV/AOD.16300985000011.pool.root.1"</pre>		
In [2]:	%%time from clientlib.DataSets import EventDataSet		
	Wall time: 645 ms		
	Import the events into a Pandas array.		
	This requires docker installed. As this is a proof of principle, a lot of stuff is hardwired.		
	First thing we do is turn a dataset into an implicit stream of events.		

• Next:

- Flesh out more primitives (like filtering, nested loops, etc.)
- Back end to run on a DataFrame and flat TTree's
- Then look at a more pythonic way of expressing the queries
 - Currently is playing to the strengths of C#

Apologies

- G. Watts and M. Proffitt are attending a FAIR workshop
 - Findable, Accessible, Interoperable, and Reusable
 - In short: data preservation
 - If people are interested, happy to report at a future discussion.