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About me

• Hacker interested in communication infrastructure, network and security protocols
• Since 2000 active in the Chaos Computer Club (CCC)
• Researching formal verification, programming language semantics, security
• PhD (2013, ITU Copenhagen) incremental verification of the correctness of
object-oriented software using Coq and higher-order separation logic

• PostDoc (2014-2017) at University of Cambridge: MirageOS and formal model of
TCP/IP and the Unix Sockets API in HOL4

• 2018 founded the non-profit robur.io in Berlin with the goal to deploy MirageOS
• Operating my mail server since 2000, and various other services
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Motivation
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Motivation

• Systems code usually written in C
• A low-level programming language
• Re-occuring memory safety issues
(buffer overflow, ..)

• Not many guarantees from the
compiler
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Operating system
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Stack
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• Common Unix applications depend
on shared libraries, their
configuration files.

• Reproducing one application on a
separate computer requires all
these artifacts.
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Multiple processes
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• The kernel isolates processes from
each other, assigns resources, and
controls access.

• An attack is contained to a single
process (unless running under
superuser privileges or privileges
are escalated).
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Hypervisor stack
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Hypervisor
- Resource management

- Scheduling of VMs

Emulated Hardware and assigned resources

• The hypervisor manages the
physical machine and assigns
resources to virtual machines.
Hardware is emulated.

• Leads to two layers of scheduling
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Multiple Virtual Machines

Hardware (CPU, disk, NIC, memory)

Hypervisor
- Resource management

- Scheduling of VMs

Emulated Hardware and assigned resources

App App

Virtual Machine

App App

Virtual Machine

• Hypervisor isolates virtual
machines from each other

• An attack is contained to the VM
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MirageOS unikernel - library operating system

Hardware (CPU, disk, NIC, memory)

Hypervisor
- Resource management

- Scheduling of VMs

Emulated Hardware and assigned resources

Network stack

                    OCaml runtime                      

Application code

Other OCaml
libraries

Cooperative Tasks

• Each MirageOS unikernel is a separate
virtual machine

• Each is tailored for its single service at
compilation time

• From a large set of reusable libraries
• Single address space
• Programming language guarantees isolation
of libraries

• Cooperative tasks, no interrupts neither
preemption

• Explicit resource dependencies: network
devices, block device
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Perfection is achieved, not when there is nothing more to add, but when there
is nothing left to take away.

Antoine de Saint-Exupery (1900 - 1944)
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Unikernels and traditional OS

Hardware (CPU, disk, NIC, memory)

Hypervisor
- Resource management

- Scheduling of VMs

Emulated Hardware and assigned resources

Uni Uni

Unix VM

AppApp

Uni Uni

• Small memory footprint, can run
thousands on my laptop

• Drastically reduced attack surface
• Boots in milliseconds (no
hardware probing)
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OCaml

• Multi-paradigm memory-managed programming language
• Expressive type system with type inference
• Strong type system, no downcasts or pointer arithmetics
• Unique module system
• Compiles to native machine code, types are erased during compilation
• Used by industry and academia for proof assistants, compilers
• Developed since more than 25 years at INRIA
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MirageOS OCaml style

• No objects
• Immutable data as much as sensible
• Errors are explicitly declared in the API, no exceptions
• Concurrent programming with promises using the lwt library
• Declarative code - easy to understand and reason about
• Expressing invariants (e.g. read-only buffer) in the type system
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Example: DNS resource records

• The Domain Name
System (DNS) defines
several resource record
types (address (A), start
of authority (SOA), ..)

• Their value shapes
depend on the type: an A
record may only contain a
set of IPv4 addresses

• The OCaml type system
is sufficiently expressive
to encode these invariants

type ttl = int32
type _ rr =

| Soa : Soa.t rr
| A : (ttl * Ipv4_set.t) rr
| Aaaa : (ttl * Ipv6_set.t) rr
| Ns : (ttl * Domain_name.Set.t) rr
| Cname : (ttl * Domain_name.t) rr
| Unknown : int -> (ttl * String.Set.t) rr
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Example: MirageOS CLOCK interface

module type PCLOCK = sig
val now_d_ps : unit -> int * int64
(** [now_d_ps ()] is [(d, ps)] representing the POSIX time occuring

at [d] * 86’400e12 + [ps] POSIX picoseconds from the epoch
1970-01-01 00:00:00 UTC. [ps] is in the range
[0;86_399_999_999_999_999L]. *)

end

• Implementation depends on target
• On Unix, gettimeofday is used
• On KVM and Xen, the CPU instruction RDTSC is used
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Example: Interfaces and implementation

• As MirageOS unikernel
developer, you program
against the interface!

• Write once, run anywhere ;)

module Main (T : TIME) (P : PCLOCK) = struct
let start _time _pclock =
let rec speak () =
let now = Ptime.v (P.now_d_ps ()) in
let pp_ts = Ptime.pp_rfc3339 () in
Format.printf "It is %a\n%!" pp_ts now;
T.sleep_ns (Duration.of_sec 1) >>= fun () ->
speak ()

in
speak ()

end
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Example: Running a unikernel

$ mirage configure #configures (defaults to Unix target)
$ make depend #installs necessary dependencies
$ mirage build #compiles the unikernel, producing an ELF executable
$ ./speaking_clock #executes it

$ mirage configure -t hvt #configures for Hardware Virtualized Tender (KVM)
$ make depend #installs necessary dependencies
$ mirage build #compiles, output: monitor (solo5-hvt) and VM image (.hvt)
$ ./solo5-hvt speaking_clock.hvt #executes it
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Supported MirageOS targets

• Unix binary (development and testing)
• Architectures: x86-64, arm64, ESP32, soon RISC-V
• Hypervisor: Xen, KVM, FreeBSD BHyve, OpenBSD VMM, Virtio
• Muen separation kernel (Ada/SPARK)
• Genode operating system framework (Nova microkernel, L4)
• Linux binary with strict seccomp filters
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Unikernel: Bitcoin Piñata
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Unikernel: Bitcoin Piñata

• Marketing of our from-scratch TLS
implementation

• Transparent and self-serving security bait
• Web server which contains a private key for
a Bitcoin wallet

• If a peer authenticates (using TLS and
client certificates), it sends the private key

• Online since February 2015
• Contained 10 BTC until March 2018
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Trusted computing base - Bitcoin Piñata
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Performance of nqsb-TLS (2015, on a laptop)

• Throughput

• Handshakes (number per second)

nqsb OpenSSL Polar
RSA 698 723 672
DHE-RSA 601 515 367
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Unikernel: CalDAV server

• Implements iCalendar and basic CalDAV features (no scheduling)
• Interoperable with macOS, iOS, Thunderbird, Android DAVdroid, and more
• Storage of data can be in a remote git repository (any key-value store)
• Funded by German ministry for research and education in 2018
• Under the prototypefund open source funding scheme (6 months)
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MirageOS libraries
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Existing MirageOS unikernels

• Various web sites including mirage.io and nqsb.io
• Content management system Canopy that serves Markdown files from a git remote
• OpenVPN client (work in progress)
• QubesOS firewall (run-time rule changes under development)
• CalDAV server (test deployment since November 2018)
• DNS resolver
• DNS server including let’s encrypt certificate issuance
• DHCP server
• SMTP server (work in progress)
• Albatross orchestration system, deploying unikernels via TLS client certificates
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Security

• Minimized attack surface
• Avoiding common attack vectors, such as memory corruptions
• Defense in depth (in progress): R ˆ X mapping, stack guard, ASLR
• Formal verification on the horizon
• Supply chain: signed library releases, reproducible builds
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Signed library releases (wip)

• Library authors sign their releases
• A quorum of repository maintainers delegates packages to authors
• Impact of a private key compromise or loss is contained to their packages
• If a quorum of maintainers is compromised, game over
• Rollback, mix-and-match attacks mitigated by snapshot service
• Freeze, slow retrieval attacks mitigated by timestamp service
• Using update framework (Cappos NYU) with augmentation proposal TAP8
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Reproducible builds

• Simple idea: compiling the source should produce identical output
• Temporary files names, timestamps, build path are problematic
• Environment (C compiler, libc, ..) needs to be specified as input
• The OCaml compiler and runtime are reproducible, MirageOS unikernels mostly
• reproducible-builds.org
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Testing and formal verification

• Unit testing, quickcheck, fuzz-based testing
• Model checking with TLA+ was used for libraries
• Interactive proof assistant Coq generates OCaml code
• Dependently typed Agda generates OCaml code
• CFML is a proof system specifically for OCaml
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Community

• Research at University of Cambridge since 2008 (ongoing student projects, etc.)
• Bi-annual hack retreats since 2016 (7 days, ~35 participants)
• Using MirageOS unikernels at the retreats (DNS resolver, DHCP server, . . . )
• Open source contributors worldwide, more than 100 met at retreats
• Docker for Mac and Docker for Windows was developed by MirageOS team
members, and uses the MirageOS libraries

• I’m running 15 unikernels on my servers since a year (DNS, Webserver, CalDAV)
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Rome ne s’est pas faite en un jour

Li Proverbe au Vilain, around 1190
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Conclusion

• Security from the ground up
• Reduced complexity
• Reasonable performance
• Boots in milliseconds
• Tiny memory footprint
• Permissively licensed (BSD/MIT)
• More information at mirage.io
• We at robur.io provide commercial MirageOS development as non-profit company
• Sometimes I blog at hannes.nqsb.io
• If you’re interested in further discussions, contact me via eMail
hannes@mehnert.org
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Selected related talks

• At FOSDEM 2019 about Solo5 by Martin Lucina
https://fosdem.org/2019/schedule/event/solo5_unikernels/

• At 34C3 (2017) by Mindy Preston
https://media.ccc.de/v/34c3-8949-library_operating_systems

• At Lambda World 2018 by Romain Calascibetta
https://www.youtube.com/watch?v=urG5BjvjW18

• At Esper (2015) by Anil Madhavapeddy
https://www.youtube.com/watch?v=bC7rTUEZfmI
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