
MirageOS: robust and secure services for the cloud

Hannes Mehnert, robur.io, hannes@mehnert.org

CERN computing seminar, 10th May 2019, Geneva

1 / 36

About me

• Hacker interested in communication infrastructure, network and security protocols
• Since 2000 active in the Chaos Computer Club (CCC)
• Researching formal verification, programming language semantics, security
• PhD (2013, ITU Copenhagen) incremental verification of the correctness of
object-oriented software using Coq and higher-order separation logic

• PostDoc (2014-2017) at University of Cambridge: MirageOS and formal model of
TCP/IP and the Unix Sockets API in HOL4

• 2018 founded the non-profit robur.io in Berlin with the goal to deploy MirageOS
• Operating my mail server since 2000, and various other services

2 / 36

Motivation

3 / 36

Motivation

• Systems code usually written in C
• A low-level programming language
• Re-occuring memory safety issues
(buffer overflow, ..)

• Not many guarantees from the
compiler

4 / 36

Operating system

5 / 36

Stack

SchedulerFile system

Process
Management

Network

Hardware
Drivers

User
Management

Hardware (CPU, disk, NIC, memory)

System calls, Sockets API

System libraries (libc)

Programming language runtime

Application Binary

Crypto (libssl)

Configuration Files

• Common Unix applications depend
on shared libraries, their
configuration files.

• Reproducing one application on a
separate computer requires all
these artifacts.

6 / 36

.

7 / 36

Multiple processes

SchedulerFile system

Process
Management

Network

Hardware
Drivers

User
Management

Hardware (CPU, disk, NIC, memory)

System calls, Sockets API

Application ApplicationApplication

• The kernel isolates processes from
each other, assigns resources, and
controls access.

• An attack is contained to a single
process (unless running under
superuser privileges or privileges
are escalated).

8 / 36

Hypervisor stack

SchedulerFile system

Process
Management

Network

Hardware
Drivers

User
Management

Hardware (CPU, disk, NIC, memory)

System calls, Sockets API

System libraries (libc)

Programming language runtime

Application Binary

Crypto (libssl)

Configuration Files

Hypervisor
- Resource management

- Scheduling of VMs

Emulated Hardware and assigned resources

• The hypervisor manages the
physical machine and assigns
resources to virtual machines.
Hardware is emulated.

• Leads to two layers of scheduling

9 / 36

Multiple Virtual Machines

Hardware (CPU, disk, NIC, memory)

Hypervisor
- Resource management

- Scheduling of VMs

Emulated Hardware and assigned resources

App App

Virtual Machine

App App

Virtual Machine

• Hypervisor isolates virtual
machines from each other

• An attack is contained to the VM

10 / 36

MirageOS unikernel - library operating system

Hardware (CPU, disk, NIC, memory)

Hypervisor
- Resource management

- Scheduling of VMs

Emulated Hardware and assigned resources

Network stack

 OCaml runtime

Application code

Other OCaml
libraries

Cooperative Tasks

• Each MirageOS unikernel is a separate
virtual machine

• Each is tailored for its single service at
compilation time

• From a large set of reusable libraries
• Single address space
• Programming language guarantees isolation
of libraries

• Cooperative tasks, no interrupts neither
preemption

• Explicit resource dependencies: network
devices, block device

11 / 36

.

Perfection is achieved, not when there is nothing more to add, but when there
is nothing left to take away.

Antoine de Saint-Exupery (1900 - 1944)

12 / 36

Unikernels and traditional OS

Hardware (CPU, disk, NIC, memory)

Hypervisor
- Resource management

- Scheduling of VMs

Emulated Hardware and assigned resources

Uni Uni

Unix VM

AppApp

Uni Uni

• Small memory footprint, can run
thousands on my laptop

• Drastically reduced attack surface
• Boots in milliseconds (no
hardware probing)

13 / 36

OCaml

• Multi-paradigm memory-managed programming language
• Expressive type system with type inference
• Strong type system, no downcasts or pointer arithmetics
• Unique module system
• Compiles to native machine code, types are erased during compilation
• Used by industry and academia for proof assistants, compilers
• Developed since more than 25 years at INRIA

14 / 36

MirageOS OCaml style

• No objects
• Immutable data as much as sensible
• Errors are explicitly declared in the API, no exceptions
• Concurrent programming with promises using the lwt library
• Declarative code - easy to understand and reason about
• Expressing invariants (e.g. read-only buffer) in the type system

15 / 36

Example: DNS resource records

• The Domain Name
System (DNS) defines
several resource record
types (address (A), start
of authority (SOA), ..)

• Their value shapes
depend on the type: an A
record may only contain a
set of IPv4 addresses

• The OCaml type system
is sufficiently expressive
to encode these invariants

type ttl = int32
type _ rr =

| Soa : Soa.t rr
| A : (ttl * Ipv4_set.t) rr
| Aaaa : (ttl * Ipv6_set.t) rr
| Ns : (ttl * Domain_name.Set.t) rr
| Cname : (ttl * Domain_name.t) rr
| Unknown : int -> (ttl * String.Set.t) rr

16 / 36

Example: MirageOS CLOCK interface

module type PCLOCK = sig
val now_d_ps : unit -> int * int64
(** [now_d_ps ()] is [(d, ps)] representing the POSIX time occuring

at [d] * 86’400e12 + [ps] POSIX picoseconds from the epoch
1970-01-01 00:00:00 UTC. [ps] is in the range
[0;86_399_999_999_999_999L]. *)

end

• Implementation depends on target
• On Unix, gettimeofday is used
• On KVM and Xen, the CPU instruction RDTSC is used

17 / 36

Example: Interfaces and implementation

• As MirageOS unikernel
developer, you program
against the interface!

• Write once, run anywhere ;)

module Main (T : TIME) (P : PCLOCK) = struct
let start _time _pclock =
let rec speak () =
let now = Ptime.v (P.now_d_ps ()) in
let pp_ts = Ptime.pp_rfc3339 () in
Format.printf "It is %a\n%!" pp_ts now;
T.sleep_ns (Duration.of_sec 1) >>= fun () ->
speak ()

in
speak ()

end

18 / 36

Example: Running a unikernel

$ mirage configure #configures (defaults to Unix target)
$ make depend #installs necessary dependencies
$ mirage build #compiles the unikernel, producing an ELF executable
$./speaking_clock #executes it

$ mirage configure -t hvt #configures for Hardware Virtualized Tender (KVM)
$ make depend #installs necessary dependencies
$ mirage build #compiles, output: monitor (solo5-hvt) and VM image (.hvt)
$./solo5-hvt speaking_clock.hvt #executes it

19 / 36

Supported MirageOS targets

• Unix binary (development and testing)
• Architectures: x86-64, arm64, ESP32, soon RISC-V
• Hypervisor: Xen, KVM, FreeBSD BHyve, OpenBSD VMM, Virtio
• Muen separation kernel (Ada/SPARK)
• Genode operating system framework (Nova microkernel, L4)
• Linux binary with strict seccomp filters

20 / 36

Unikernel: Bitcoin Piñata

21 / 36

Unikernel: Bitcoin Piñata

• Marketing of our from-scratch TLS
implementation

• Transparent and self-serving security bait
• Web server which contains a private key for
a Bitcoin wallet

• If a peer authenticates (using TLS and
client certificates), it sends the private key

• Online since February 2015
• Contained 10 BTC until March 2018

22 / 36

Trusted computing base - Bitcoin Piñata

23 / 36

Performance of nqsb-TLS (2015, on a laptop)

• Throughput

• Handshakes (number per second)

nqsb OpenSSL Polar
RSA 698 723 672
DHE-RSA 601 515 367

24 / 36

Unikernel: CalDAV server

• Implements iCalendar and basic CalDAV features (no scheduling)
• Interoperable with macOS, iOS, Thunderbird, Android DAVdroid, and more
• Storage of data can be in a remote git repository (any key-value store)
• Funded by German ministry for research and education in 2018
• Under the prototypefund open source funding scheme (6 months)

25 / 36

https://prototypefund.de

MirageOS libraries

26 / 36

.

27 / 36

Existing MirageOS unikernels

• Various web sites including mirage.io and nqsb.io
• Content management system Canopy that serves Markdown files from a git remote
• OpenVPN client (work in progress)
• QubesOS firewall (run-time rule changes under development)
• CalDAV server (test deployment since November 2018)
• DNS resolver
• DNS server including let’s encrypt certificate issuance
• DHCP server
• SMTP server (work in progress)
• Albatross orchestration system, deploying unikernels via TLS client certificates

28 / 36

https://mirage.io
https://nqsb.io

Security

• Minimized attack surface
• Avoiding common attack vectors, such as memory corruptions
• Defense in depth (in progress): R ˆ X mapping, stack guard, ASLR
• Formal verification on the horizon
• Supply chain: signed library releases, reproducible builds

29 / 36

Signed library releases (wip)

• Library authors sign their releases
• A quorum of repository maintainers delegates packages to authors
• Impact of a private key compromise or loss is contained to their packages
• If a quorum of maintainers is compromised, game over
• Rollback, mix-and-match attacks mitigated by snapshot service
• Freeze, slow retrieval attacks mitigated by timestamp service
• Using update framework (Cappos NYU) with augmentation proposal TAP8

30 / 36

Reproducible builds

• Simple idea: compiling the source should produce identical output
• Temporary files names, timestamps, build path are problematic
• Environment (C compiler, libc, ..) needs to be specified as input
• The OCaml compiler and runtime are reproducible, MirageOS unikernels mostly
• reproducible-builds.org

31 / 36

https://reproducible-builds.org/

Testing and formal verification

• Unit testing, quickcheck, fuzz-based testing
• Model checking with TLA+ was used for libraries
• Interactive proof assistant Coq generates OCaml code
• Dependently typed Agda generates OCaml code
• CFML is a proof system specifically for OCaml

32 / 36

Community

• Research at University of Cambridge since 2008 (ongoing student projects, etc.)
• Bi-annual hack retreats since 2016 (7 days, ~35 participants)
• Using MirageOS unikernels at the retreats (DNS resolver, DHCP server, . . .)
• Open source contributors worldwide, more than 100 met at retreats
• Docker for Mac and Docker for Windows was developed by MirageOS team
members, and uses the MirageOS libraries

• I’m running 15 unikernels on my servers since a year (DNS, Webserver, CalDAV)

33 / 36

.

Rome ne s’est pas faite en un jour

Li Proverbe au Vilain, around 1190

34 / 36

Conclusion

• Security from the ground up
• Reduced complexity
• Reasonable performance
• Boots in milliseconds
• Tiny memory footprint
• Permissively licensed (BSD/MIT)
• More information at mirage.io
• We at robur.io provide commercial MirageOS development as non-profit company
• Sometimes I blog at hannes.nqsb.io
• If you’re interested in further discussions, contact me via eMail
hannes@mehnert.org

35 / 36

https://mirage.io
https://robur.io
https://hannes.nqsb.io

Selected related talks

• At FOSDEM 2019 about Solo5 by Martin Lucina
https://fosdem.org/2019/schedule/event/solo5_unikernels/

• At 34C3 (2017) by Mindy Preston
https://media.ccc.de/v/34c3-8949-library_operating_systems

• At Lambda World 2018 by Romain Calascibetta
https://www.youtube.com/watch?v=urG5BjvjW18

• At Esper (2015) by Anil Madhavapeddy
https://www.youtube.com/watch?v=bC7rTUEZfmI

36 / 36

https://fosdem.org/2019/schedule/event/solo5_unikernels/
https://media.ccc.de/v/34c3-8949-library_operating_systems
https://www.youtube.com/watch?v=urG5BjvjW18
https://www.youtube.com/watch?v=bC7rTUEZfmI

