MirageOS: robust and secure services for the cloud

Hannes Mehnert, robur.io, hannes@mehnert.org

CERN computing seminar, 10th May 2019, Geneva

1/36

About me

Hacker interested in communication infrastructure, network and security protocols
Since 2000 active in the Chaos Computer Club (CCC)
Researching formal verification, programming language semantics, security

PhD (2013, ITU Copenhagen) incremental verification of the correctness of
object-oriented software using Coq and higher-order separation logic

PostDoc (2014-2017) at University of Cambridge: MirageOS and formal model of
TCP/IP and the Unix Sockets APl in HOL4

2018 founded the non-profit robur.io in Berlin with the goal to deploy MirageOS

Operating my mail server since 2000, and various other services

2/36

Motivation

3/36

SECOND EDITION

THE

\

PROGRAMMING
LANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

SHENTICE HALL SOFTWARE SERIES

Motivation

Systems code usually written in C
A low-level programming language

Re-occuring memory safety issues
(buffer overflow, ..)

Not many guarantees from the
compiler

4/36

.Sy.de.w\ even do?

Dkt 1 I

e you' ng,

21 ot Hhar s 23 progre™ *

%8 lyries o Hhe cig 'f?phc: of wont to use the
)) g I only

have 1 cores - You!
have Fo Take
tuens ¥

‘)(ogrms

v

SO P43 dwpapu

T have 1.2 OB of
RAM 1eft onhis

chlunc W anyare.
vants it

@bOrk
:)vnS.ka

|
|
|
Your cool l
(
[
|

e —————— — == —— = — =~

o — — —

Operating system

5/36

Stack

~
[Application Binary) [Conﬁguration Files
>

[Programming language runtime)

[System libraries (Iibc)) [Crypto (Iibssl))
e Common Unix applications depend
— on shared libraries, their
- - - configuration files.
--- e Reproducing one application on a
separate computer requires all
ij these artifacts.

6/36

Code you care
about

Code the 0S
insists you need

Application Application Application

Hardware (CPU, disk, NIC, memory)

Multiple processes

e The kernel isolates processes from
each other, assigns resources, and
controls access.

e An attack is contained to a single
process (unless running under
superuser privileges or privileges
are escalated).

8/36

(Application BinaryJ (Conﬁguration FiIesJ

(Programming language runtimeJ

(System libraries (Iibc)J (Crypto (IibssI)J

Emulated Hardware and assigned resources

Hypervisor
- Resource management
- Scheduling of VMs

Hardware (CPU, disk, NIC, memory)

Hypervisor stack

e The hypervisor manages the
physical machine and assigns
resources to virtual machines.
Hardware is emulated.

e Leads to two layers of scheduling

9/36

Multiple Virtual Machines

App || App App || App

e Hypervisor isolates virtual
machines from each other

e An attack is contained to the VM

Emulated Hardware and assigned resources

Hypervisor
- Resource management
- Scheduling of VMs

Hardware (CPU, disk, NIC, memory)

10/ 36

Application code
Network stack
Other OCaml
) libraries
Cooperative Tasks
(OCaml runtime J

Emulated Hardware and assigned resources

Hypervisor
- Resource management
- Scheduling of VMs

Hardware (CPU, disk, NIC, memory)

MirageOS unikernel - library operating system

Each MirageOS unikernel is a separate
virtual machine

Each is tailored for its single service at
compilation time

From a large set of reusable libraries
Single address space

Programming language guarantees isolation
of libraries

Cooperative tasks, no interrupts neither
preemption

Explicit resource dependencies: network

devices, block device
11/36

Perfection is achieved, not when there is nothing more to add, but when there
is nothing left to take away.

Antoine de Saint-Exupery (1900 - 1944)

12/36

App || App

Unikernels and traditional OS

e Small memory footprint, can run
thousands on my laptop

i e Drastically reduced attack surface
e Boots in milliseconds (no
Emulated Hardware and a55|gned resources hardWare probing)
Hypervisor

- Resource management
- Scheduling of VMs

Hardware (CPU, disk, NIC, memory)

13/36

OCaml

Multi-paradigm memory-managed programming language

Expressive type system with type inference

Strong type system, no downcasts or pointer arithmetics

Unique module system

Compiles to native machine code, types are erased during compilation
Used by industry and academia for proof assistants, compilers

Developed since more than 25 years at INRIA

14/36

MirageOS OCaml style

No objects

Immutable data as much as sensible

Errors are explicitly declared in the API, no exceptions
Concurrent programming with promises using the 1wt library
Declarative code - easy to understand and reason about

Expressing invariants (e.g. read-only buffer) in the type system

15/36

Example: DNS resource records

e The Domain Name
System (DNS) defines

several resource record type ttl = int32
types (address (A), start type _ rr =
of authority (SOA), ..) | Soa : Soa.t rr

e Their value shapes | A : (ttl * Ipvd_set.t) rr
depend on the type: an A | Aaaa : (ttl * Ipv6_set.t) rr
record may only contain a | Ns : (ttl * Domain_name.Set.t) rr
| Cname : (ttl * Domain_name.t) rr
| Unknown : int -> (ttl * String.Set.t) rr

set of IPv4 addresses

e The OCaml type system
is sufficiently expressive
to encode these invariants

16 /36

Example: MirageOS CLOCK interface

module type PCLOCK = sig
val now_d_ps : unit -> int * int64
(*¥#+ [now_d_ps ()] is [(d, ps)] representing the POSIX time occuring
at [d] * 86°400e12 + [ps] POSIX picoseconds from the epoch
1970-01-01 00:00:00 UTC. [ps] is in the range
[0;86_.399_999_999_999_999L]. *)

end

e Implementation depends on target
e On Unix, gettimeofday is used
e On KVM and Xen, the CPU instruction RDTSC is used

17/36

e As MirageOS unikernel
developer, you program
against the interface!

e Write once, run anywhere ;)

Example: Interfaces and implementation

module Main (T : TIME) (P : PCLOCK) = struct
let start _time _pclock =

1

i
s
end

et rec speak () =

let now = Ptime.v (P.now_d_ps ()) in

let pp_ts = Ptime.pp_rfc3339 () in
Format.printf "It is %a\n/k!" pp_ts now;
T.sleep_ns (Duration.of_sec 1) >>= fun ()

speak ()
n
peak ()

18 /36

Example: Running a unikernel

mirage configure #configures (defaults to Uniz target)

make depend #installs necessary dependencies

mirage build #compiles the unikernel, producing an ELF exzecutable
./speaking_clock #ezecutes it

mirage configure -t hvt #configures for Hardware Virtualized Tender (KVIM)
make depend #installs necessary dependencies

mirage build #compiles, output: monitor (solob-hut) and VM image (.hut)
./solob-hvt speaking clock.hvt #ezecutes it

19/36

Supported MirageQOS targets

Unix binary (development and testing)

Architectures: x86-64, arm64, ESP32, soon RISC-V

Hypervisor: Xen, KVM, FreeBSD BHyve, OpenBSD VMM, Virtio
Muen separation kernel (Ada/SPARK)

Genode operating system framework (Nova microkernel, L4)

Linux binary with strict seccomp filters

20/36

Unikernel:

Bitcoin Pifata

You have reached the BTC
Pinata.

BTC Pifiata knows the private key to the bitcoin address 183XuXTTgnfYfKcHbI4sZeF46adoFnihdh. If
you break the Pifiata, you get to keep what's insid

Here are the rules of the game
« You can connect to port 10098 using TLS. Pifiata will send the key and hang up

« You can connect to port 10901 using TCP. Pifiata will immediately close the connection
and connect back over TLS to port 49991 on the initiating host, send the key, and hang
wp

* You can connect to port 10002 using TCP. Pifiata will initiate a TLS handshake over that
channel serving as a client, send the key over TLS, and hang up

And heres the icker: in both the client and server rales, Pifats requires the other end to
present a certificate. Authentication is perforned using standard path validation wit
single certificate as the trust anchor. And no, you can't have the certificate key.

It follows that it should be impossible to successfully establish a TLS connection as long as
Pinata is working properly. To get the spoils, you have fo smash it

Before you ask: yes, Pifiata will talk to itself and you can enjoy watching it do so.

BIC Pifiata is a Mirage0s unikernel using not quite so broken soffware. It is written in OCanl,
runs directly on Xen, and is using native OCaml TLS and X.509 implementations

The full List of installed software and a toy unikernel without secrets are available. There
is no need to use the old automated tools on Piiata - roll your own instead. This challenge
runs until the above address no longer contains the 10 bitcoins it started with, or until we
Tose interest

Why are we doing this? At the beginning of 2014 we started to develop a not quite so broken
TLS implenentation from scratch. You can read more about it on https://ngsb.io or watch our
31c3 talk about it. Now, we want fo boost our confidence in the TLS implementation we've
developed and show that robust systems software can be written in a functional language. We
recapitulated the first five months of the Pinata

ve are well aware that bounties can only disprove the security of a system, and never prove
it. We won't take home the message that we are ‘unbreakable', 'correct’, and especially not

21/36

Marketing of our from-scratch TLS
implementation

Transparent and self-serving security bait

Web server which contains a private key for
a Bitcoin wallet

If a peer authenticates (using TLS and
client certificates), it sends the private key

Online since February 2015
Contained 10 BTC until March 2018

count

600000

500000

400000

300000

200000

100000

Unikernel: Bitcoin Pifata

Cumulative Pinata accesses

HTTP
TLS ===

2015-07 2016-01 2016-07 2017-01 2017-07 2018-01
date

22/36

SMALL!

8.2MB
102 kloc

No extra stuff!

Trusted computing base - Bitcoin Pifiata

@amirme

~200MB
2560 kloc

e Throughput

350

300

Thoughput (MB/s)
- N N
8 8 2

v
o

Performance of nqsb-TLS (2015, on a laptop)

e—e OpenSSL
e e PolarSSL
e—e nqgsb-tis

,_‘
%
o

o

=

¢ Handshakes (number per second)

ngsb OpenSSL Polar

16 64 256
Block size (bytes)

1024

8192

RSA 698 723 672
DHE-RSA 601 515 367

24 /36

Unikernel: CalDAV server

Implements iCalendar and basic CalDAV features (no scheduling)
Interoperable with macQS, i0S, Thunderbird, Android DAVdroid, and more
Storage of data can be in a remote git repository (any key-value store)
Funded by German ministry for research and education in 2018

Under the prototypefund open source funding scheme (6 months)

25/36

https://prototypefund.de

MirageOS libraries

Supported Protocols O git

%DNS V-

OpenPGP
K Let’s Encrypt

-“-Prometheus
SSHQ * =¥ ®
syslog \

SNMP

26 /36

status

unkemel ngsbngsbio v

‘cpuusage (stime, utme, vopu tcks)

w0

an 1600 500

e extoral interupt — nested poge foul

7.7 min 90.7 MB 780 Bil 50.5 MB 4.92 Mil

network byt throughput memory.

LA

i

y
ity |
Mipitlig, s

ccvaiopped — recupackets — send pckels — sendq dops = sendalen = senabytes = ecvbytes v Stack pages — curtent esiden o extpages = aata poges.

external throughput Internal throughput

Existing MirageOS unikernels

Various web sites including mirage.io and ngsb.io

Content management system Canopy that serves Markdown files from a git remote
OpenVPN client (work in progress)

QubesOS firewall (run-time rule changes under development)

CalDAV server (test deployment since November 2018)

DNS resolver

DNS server including let's encrypt certificate issuance

DHCP server

SMTP server (work in progress)

Albatross orchestration system, deploying unikernels via TLS client certificates

28 /36

https://mirage.io
https://nqsb.io

Minimized attack surface

Avoiding common attack vectors, such as memory corruptions
Defense in depth (in progress): R ~ X mapping, stack guard, ASLR
Formal verification on the horizon

Supply chain: signed library releases, reproducible builds

Security

20/36

Signed library releases (wip)

Library authors sign their releases

A quorum of repository maintainers delegates packages to authors

Impact of a private key compromise or loss is contained to their packages

If a quorum of maintainers is compromised, game over

Rollback, mix-and-match attacks mitigated by snapshot service

Freeze, slow retrieval attacks mitigated by timestamp service

Using update framework (Cappos NYU) with augmentation proposal TAP8

30/36

Reproducible builds

Simple idea: compiling the source should produce identical output

Temporary files names, timestamps, build path are problematic

Environment (C compiler, libc, ..) needs to be specified as input

The OCaml compiler and runtime are reproducible, MirageOS unikernels mostly

reproducible-builds.org

31/36

https://reproducible-builds.org/

Testing and formal verification

Unit testing, quickcheck, fuzz-based testing

Model checking with TLA+ was used for libraries
Interactive proof assistant Coq generates OCaml code
Dependently typed Agda generates OCaml code
CFML is a proof system specifically for OCaml

32/36

Community

Research at University of Cambridge since 2008 (ongoing student projects, etc.)
Bi-annual hack retreats since 2016 (7 days, ~35 participants)

Using MirageOS unikernels at the retreats (DNS resolver, DHCP server, ...)
Open source contributors worldwide, more than 100 met at retreats

Docker for Mac and Docker for Windows was developed by MirageOS team
members, and uses the MirageOS libraries

I'm running 15 unikernels on my servers since a year (DNS, Webserver, CalDAV)

33/36

Rome ne s'est pas faite en un jour

Li Proverbe au Vilain, around 1190

34/36

Conclusion

Security from the ground up

Reduced complexity

Reasonable performance

Boots in milliseconds

Tiny memory footprint

Permissively licensed (BSD/MIT)

More information at mirage.io

We at robur.io provide commercial MirageOS development as non-profit company
Sometimes | blog at hannes.ngsb.io

If you're interested in further discussions, contact me via eMail
hannes@mehnert.org

35/36

https://mirage.io
https://robur.io
https://hannes.nqsb.io

Selected related talks

At FOSDEM 2019 about Solo5 by Martin Lucina
https://fosdem.org/2019/schedule/event/solo5_unikernels/

At 34C3 (2017) by Mindy Preston
https://media.ccc.de/v/34c3-8949-1ibrary_operating_systems

At Lambda World 2018 by Romain Calascibetta
https://www.youtube.com/watch?v=urG5BjvjWi8

At Esper (2015) by Anil Madhavapeddy
https://www.youtube.com/watch?v=bC7rTUEZfmI

36 /36

https://fosdem.org/2019/schedule/event/solo5_unikernels/
https://media.ccc.de/v/34c3-8949-library_operating_systems
https://www.youtube.com/watch?v=urG5BjvjW18
https://www.youtube.com/watch?v=bC7rTUEZfmI

