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Gravitational Wave Astronomy
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Gravitational Wave Discovery:
An All-Sky Survey
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. Models and simulations
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Discovery

Produce high quality
gravitational wave data

Search for and find signals

Observations
Interpret observations

Implications for stellar
evolution, astrophysics and
cosmology
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Sources: black hole and neutron star
collisions, supernovae, oscillating
neutron stars....
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Numerical Relativity at NCSA




Numerical Relativity at NCSA

Huerta et al, arXiv:1901.07038



https://arxiv.org/abs/1901.07038

Gravitational Wave Astronomy

Dynamical assembly ot black hole and
neutron star binaries in dense stellar | B
environments .
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Use gravitational waves to probe the a»
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Can we actually detect these signals with
available algorithms?

What can we learn from the observation of = chandra X-ray
dynamically assembled compact
binaries?
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Gravitational Wave Astronomy

Rebei, Huerta, Wang, et al., arXiv:1807.09787 To appear in Phys. Rev. D
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https://arxiv.org/abs/1807.09787

Sources, Signals and Searches

Number of observations increases with the detectors’ sensitivity

Localization improves with a global detector network
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Gravitational Wave Data Science at lllinois

" First time Blue Waters 1s used for
gravitational wave discovery
120 K Blue Waters
Huerta et al., eScience, IEEE 47 (2017)
100 K .
Huerta et al., Computing and Software
for Big Science, Nature Springer
80 K (2019)
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e Models and simulations

~ Scientific Discovery ™

. Observations
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Routine: black hole and neutron star
collisions
e, [uture: supernovae, oscillating neutron

stars....



Data-driven Discovery in the Community
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Multi-Messenger Astronomy
has taken off!




On disruptive changes and data revolutions

HPC and Big Data Revolution Coexist
Roadmap for Convergence
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Deep Learning

From optimism to breakthroughs
INn technology and science
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Innovative Hardware
Architectures

Develop state-of-the-art neural
nets with large datasets

Accelerate data processing and
inference

Fully trained neural nets are
computationally efficient and
portable

Applicable to any time-series datasets
Faster then real time classification and regression

Faster and deeper gravitational wave searches



ACM Award, 1st place

ACM Award Worldwide, 3rd place

2019 HPCwire Award, Best Al Application

Sociological Implications

Daniel George now a Research Scientist at Google X



From ploneering work to
oroduction scale applications

» 4] &
r'—a '

IF

|
l

1@

First application of deep learning to
detect and characterize a 4-D signal
manifold with 1+ trillion templates
Shen, Huerta and Zhao

End-to-end analysis: from detection to
tests of general relativity

Parameter estimation studies are now
endowed with a solid statistical
backbone



From ploneering wWork to
oroduction scale applications

Shen, Huerta and Zhao. To hit arXiv this week!

FEvENT NAME my (M) ™ma[Me] af WR Wi
GW150914 [37.46 [4.13] 0.06] 30.80 [0.43]-1.65] 0.689 [0.037| 0.17] 0.5362 [0.0127[-0.20] 0.0798 [0.0011| 0.16]
GWI151012 |23.89 [0.35] 1.65] 17.31 [0.56] 1.44] 0.653 [0.009]| 0 ).25] 0.5214 [0.0030] 0.15] 0.0810 [0. 0003[-0.15]
GW151226 [17.60 [2.01] 0.87] 14.14 [2.85] 0.73] 0.646 [0.006| 1.53] 0.5188 [0.0021| 1.51] 0.0812 [0.0001|-1.60]
GWI170101 |36.45 [1.54]-0.76] 21.83 [3.54]|-0.56] 0.661 [0.080/-0.81] 0.5185 [0.0306|-0.48] 0.0816 [0.0029| 0.57
GWL170608 |13.96 [1.13| 1.10] 11.96 [1.07| 1.56] 0.697 [0.025]-1.28] 0.5278 [0.01541|-0.95] 0.0809 [0.0011|-0.67
GW170729 [48.61 [1.58|-1.61] 37.69 [1.82]-0.28] 0.694 [0.019]-0.47] 0.5102 [0.0107|-0.50] 0.0812 [0.0019|-0.16]
GWI170809 |31.01 32‘)\ 0.60] 22.42 [4.56] 1.85] 0.698 [0.034[-1.23] 0.5428 [0.0163]-1.15] 0.0779 [0.0016/-1.05]
GWI70811 |35.07 "5 0. “<1 21.50 [0.52] 0.99] 0.718 [0.010[-1.89] 0.5377 [0.0108]-1.38] 0.07941 [0.0003| 1.76]

29}

'5]-1

GWI70818 [10.05 241.08 [0.93|-1.33] 0.656 [0.015] 0.73] 0.5129 [0.0043| 1.21] 0.0816 [0.0005/-1.02]
GWI170823 |39.56 | 75]

-1 i\) ll

30.11 [0.53/-1.68] 0.710 [0.002|-1.76] 0.5510 [0.0007|-1.71] 0.0782 [0.0001]| 1.




Gravitational Wave Cosmology

Gravitational waves can
enable standard-siren
measurements of the

Hubble constant

No electromagnetic
counterpart needed




Gravitational Wave Cgsmology
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Deep Learning for DES data science
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Few have witnessed what you're about to see From the citizen science
revolution using the Sloan
Digital Sky Survey...

Faperisnce & prealeged wimpse of e dndand niee e sy obasrves] by G 50055, CHO and Wi

Classlfy Galaxles

Toadonlan e pibaos lonnzd wanusd your idp e
cezsiyten axarding 3 1me r dhapes. If wou're Quick,
e e e bed e el adiensy
woure mbad o ceashy.

. to large scale discovery using
unlabeled images in the Dark
Energy Survey using deep
learning




Deep Learning for DES data science

Khan, Huerta, Wang and Gruendl|,
arXiv:1812.02183

To appear in Physics Letters B

Unlabelled DES

10k+ raw, unlabeled galaxy images from DES
clustered according to morphology using
RGB filters

Scalable approach to curate datasets, and to
construct large-scale galaxy catalogs







Now consider these anomalies

Post-process 1images 1n real-time

Image subtraction, feature extraction,
unsupervised learning

GW170817 GW170817
DECam observation DECam observation
(0.5-1.5 days post merger) (>14 days post merger)
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Observe the transient sky in
UHF, prepare for the unexpected!
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Search for and use weak
lenses to find and
understand dark matter

Galaxy catalogs to unveil
effect of dark energy in
structure of spacetime
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