

Convergence of Deep Learning and Large Scale Computing: A Paradigm Shift for Multi-Messenger Astrophysics

Eliu Huerta
Gravity Group
gravity.ncsa.illinois.edu

National Center for Supercomputing Applications
Computational Science and Engineering Faculty Fellow
Department of Astronomy
University of Illinois at Urbana-Champaign

Dark Machines Monthly Meeting March 5th 2019

© NCSA

© NCSA & NVIDIA

Listen to the Dark Sector of the Universe

Listen to and observe cosmic mergers

Listen to, observe and feel cosmic explosions in the nearby Universe

Gravitational Wave Astronomy

Gravitational Wave Discovery: An All-Sky Survey

Observations

Models and simulations

Discovery

Produce high quality gravitational wave data

Search for and find signals

Interpret observations

Implications for stellar evolution, astrophysics and cosmology

Repeat

Theory

$$G_{\mu\nu} = 8\pi T_{\mu\nu}$$

Sources: black hole and neutron star collisions, supernovae, oscillating neutron stars....

NCSA Gravity Group

Astronomy

Coordinated Science Lab

Statistics and Mathematics

NCSA

Blue Waters XSEDE

Innovative Systems Lab

DES and LSST

SPIN and **REU**

Physics

Computer Science

Electrical and Computing Engineering

Numerical Relativity at NCSA

A three-detector observation of gravitational waves from a binary black hole coalescence

simulation and scientific visualization by

Gabrielle Allen, Rotand Haas, Elliu Huerta, Edward Seid Gravity Group National Center for Supercomputing Applications University of Illinois at Urbana-Champaign

Numerical Relativity at NCSA

Huerta et al, arXiv: 1901.07038

Gravitational Wave Astronomy

- Dynamical assembly of black hole and neutron star binaries in dense stellar environments
- Use gravitational waves to probe the existence of these sources
- Can we actually detect these signals with available algorithms?
- What can we learn from the observation of dynamically assembled compact binaries?

Gravitational Wave Astronomy

Rebei, Huerta, Wang, et al., arXiv:1807.09787 To appear in Phys. Rev. D

20

- 15

Sources, Signals and Searches

Number of observations increases with the detectors' sensitivity

Localization improves with a global detector network

Gravitational Wave Data Science at Illinois

Models and simulations

Scientific Discovery

Observations

$$G_{\mu\nu} = 8\pi T_{\mu\nu}$$

Routine: black hole and neutron star collisions

Future: supernovae, oscillating neutron stars...

Data-driven Discovery in the Community

Multi-Messenger Astronomy has taken off!

Swift transition from "first detection era" to discovery at scale

Binary black holes observations are now routine!

Several Multi-Messenger observations will take place in LIGO-Virgo-Kagra third observing run

Pressing need to change existing paradigm to maximize discovery

On disruptive changes and data revolutions

HPC and Big Data Revolution Coexist Roadmap for Convergence

2012

Boom of interest in infrastructure and tools for big data analytics in cloud computing environments

US Presidential Strategic
Initiative: convergence of
big data and
HPC ecosystem

Deep Learning From optimism to breakthroughs in technology and science

High Performance Computing

Understand sources with numerical relativity

Datasets of numerical relativity waveforms to train and test neural nets

Train neural nets with distributed computing

Innovative Hardware Architectures

Develop state-of-the-art neural nets with large datasets

Accelerate data processing and inference

Fully trained neural nets are computationally efficient and portable

Applicable to any time-series datasets

Faster then real time classification and regression

Faster and deeper gravitational wave searches

ACM Award, 1st place

ACM Award Worldwide, 3rd place

2019 HPCwire Award, Best Al Application

Sociological Implications

Daniel George now a Research Scientist at Google X

From pioneering work to production scale applications

First application of deep learning to detect and characterize a 4-D signal manifold with 1+ trillion templates
Shen, Huerta and Zhao

End-to-end analysis: from detection to tests of general relativity

Parameter estimation studies are now endowed with a solid statistical backbone

From pioneering work to production scale applications

Shen, Huerta and Zhao. To hit arXiv this week!

EVENT NAME	$m_1[{ m M}_{\odot}]$	$m_2[{ m M}_{\odot}]$	a_f	ω_R	ω_I
GW150914	37.46 [4.13 0.06]	30.80 [0.43 -1.65]	0.689 [0.037 0.17]	0.5362 [0.0127 -0.20]	$0.0798 \ [0.0011 \ 0.16]$
GW151012	23.89 [0.35 1.65]	$17.34 \ [0.56 \ 1.44]$	$0.653 \ [0.009 \ 0.25]$	0.5214 [0.0030 0.15]	$0.0810 \ [0.0003 - 0.15]$
GW151226	17.60 [2.01] 0.87]	14.14 [2.85] 0.73]	0.646 [0.006 1.53]	0.5188 [0.0021] 1.51]	0.0812 [0.0001]-1.60]
GW170104	36.45 [1.54]-0.76]	21.83 [3.54]-0.56]	0.661 [0.080]-0.84]	0.5185 [0.0306]-0.48]	$0.0816 \ [0.0029] \ 0.57]$
GW170608	13.96 [1.13] 1.10]	11.96 [1.07] 1.56]	0.697 [0.025 -1.28]	0.5278 [0.0154 -0.95]	$0.0809 \ [0.0011 - 0.67]$
GW170729	48.61 [1.58]-1.61]	37.69 [1.82 -0.28]	0.694 [0.019] - 0.47]	0.5102 [0.0107 -0.50]	0.0812 [0.0019]-0.16]
GW170809	31.01 [3.29] 0.60]	22.42 [4.56] 1.85]	0.698 [0.034]-1.23]	0.5428 [0.0163]-1.15]	0.0779 [0.0016]-1.05]
GW170814	35.07 [1.75 0.84]	21.50 [0.52] 0.99]	0.718 [0.010]-1.89]	0.5377 [0.0108]-1.38]	0.0794 [0.0003] 1.76]
GW170818	40.05 [1.29]-1.57]	24.08 [0.93]-1.33]	0.656 [0.015] 0.73]	0.5129 [0.0043] 1.21]	0.0816 [0.0005 -1.02]
GW170823	39.56 [1.75]-1.44]	30.14 [0.53 -1.68]	0.740 [0.002 - 1.76]	0.5510 [0.0007 -1.74]	0.0782 [0.0001 1.75]

Gravitational Wave Cosmology

Gravitational waves can enable standard-siren measurements of the Hubble constant

No electromagnetic counterpart needed

Gravitational Wave Cosmology

We need galaxy catalogs Gravitational way DES provides ideal case study enable sta measurem Hubble co No electromagnetic counterpart needed

Deep Learning for DES data science

From the citizen science revolution using the Sloan Digital Sky Survey...

... to large scale discovery using unlabeled images in the Dark Energy Survey using deep learning

Deep Learning for DES data science

Khan, Huerta, Wang and Gruendl, arXiv:1812.02183

To appear in Physics Letters B

Unlabelled DES

10k+ raw, unlabeled galaxy images from DES clustered according to morphology using RGB filters

Scalable approach to curate datasets, and to construct large-scale galaxy catalogs

Now consider these anomalies

Post-process images in real-time

Image subtraction, feature extraction, unsupervised learning

LSST SCIENCE

Observe the transient sky in UHF, prepare for the unexpected!

Galaxy catalogs to unveil effect of dark energy in structure of spacetime

Search for and use weak lenses to find and understand dark matter

LSST SCIENCE

Observe the transient sky in UHF, prepare for the unexpected!

Search for and use weak lenses to find and understand dark matter

Galaxy catalogs to unveil effect of dark energy in structure of spacetime

abbyie

NIDIA Capital One

