

Real-time supernova detection with KM3NeT

SNEWS 2.0: Supernova Neutrinos in the Multi-Messenger Era Laurentian University, Sudbury, Canada, June 14th-17th, 2019

Massimiliano Lincetto † on behalf of the KM3NeT collaboration June 16, 2019

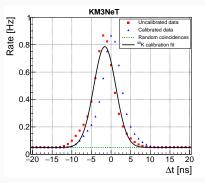
[†]Aix-Marseille Université, CNRS/IN2P3, CPPM, Marseille (France)

KM3NeT 2.0/INFRADEV - this project has received funding from the European Union's Horizon H2020 research and innovation programme under grant agreement No 739560.

The two **KM3NeT neutrino detectors** (ARCA and ORCA) are designed for a shared **rich multi-messenger astronomy program**.

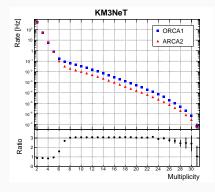
The supernova neutrino detection is the first real-time analysis to combine data from ORCA and ARCA.

- The ARCA (IT) and ORCA (FR) KM3NeT detectors will provide 3 blocks × 115 lines × 18 digital optical modules (DOMs) × 31 directional PMTs;
- large-scale experiment not optimised for reconstruction of low energy events;
- CCSN ν burst can be detected as a global detector PMT rate increase.



The multi-PMT DOM technology can be exploited for signal identification.

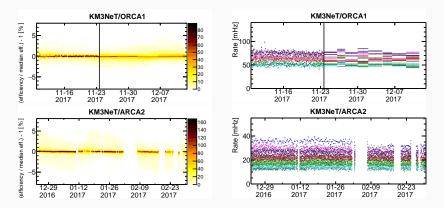
Selection of light in coincidence between multiple PMTs of the same DOM is a key capability for KM3NeT:


- removal of uncorrelated bioluminescence and part of the ⁴⁰K -dominated radioactive decays
- ns-coincidences between photons are signatures of Cherenkov light!
- correlated ⁴⁰K photons are used for in-situ time and efficiency calibration.

This is (so far) the first and only astronomy study exploiting low-level coincidence data!

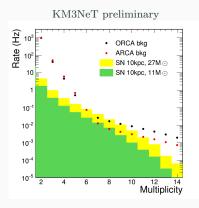
The number of PMTs detecting light in a $10\ ns$ coincidence is called multiplicity M.

Multiplicity depends on topology, light yield, distance from the DOM.



- ⁴⁰K dominates at low multiplicity, rate $R = (500 \text{ Hz}) \cdot 10^{2-M}$;
- atmospheric muons form a tail at high multiplicity (M ≥ 8), dependent on the depth;
- see arXiv:1906.02704 for details!

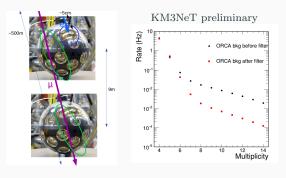
Stability of backgrounds


 $^{40}\mathrm{K}~\rightarrow$ PMT efficiencies

Atmospheric muons ($M \ge 8$)

Effective rejection of bioluminescence through the selection of high multiplicities.

CCSN neutrino events produces photons mainly detected as a **coincidence on a single DOM**. The **multiplicity range [6,10]** is the most favourable for the signal selection.

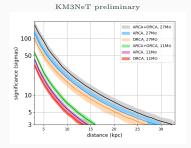


Crossover region between $^{40}{\rm K}$ and atmospheric muons. Background rate per DOM in the [6,10] multiplicity range $\sim 0.1\,{\rm Hz}.$

Reduced rates allow efficient **real-time processing**.

Atmospheric muon rejection

- CCSN neutrinos are mostly detectable on a single DOM;
- correlation of coincidences between multiple DOMs allow to tag atmospheric muons.


Best performance with **ORCA spacing** \rightarrow 50% background reduction, compensating the originally higher muon rate due to shallower depth.

The standard KM3NeT **physics triggers** provide an additional mean for muon rejection (under testing).

Offline observation

trigger level $X \equiv$ coincidences in the multiplicity range [6,10] over a time window of duration τ . For signal expectation $X_D \propto D^{-2}$ and total background rate ρ_B :

$$P(X \ge X_D) = \sum_{X=X_D}^{+\infty} \mathcal{P}(X, \rho_B \cdot \tau)$$

Real-time search

Sliding time window $\tau = 400 \text{ ms}$, updated with $f_s = 10 \text{ Hz}$ sampling frequency (trial rate).

Robustness \rightarrow counting of **unique DOMs** (Poisson approximation for $X_D \ll N_{DOMs}$)

Trigger background rate:

$$R_B(X \ge X_D) = f_s \cdot P(X \ge X_D)$$

DOM counting

Probability for K_D DOMs out of N to detect a coincidence is binomial.

$$R_B(K \geq K_D) = f_s \cdot \sum_{K=K_D}^N f(K, N, p)$$

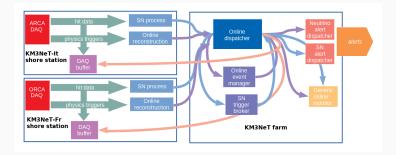
$$N \equiv N_{DOMs}$$
; $p = \rho_B^{DOM} \cdot \tau$

$$K_D = N\left(1 - \left(1 - \frac{1}{N}\right)^{X_D}\right)$$

Alert horizon for 3 KM3NeT DUs (2 ORCA + 1 ARCA) as in current running configuration and 8 KM3NeT DUs (6 ORCA + 2 ARCA) as in near future.

	KM3NeT 3 DUs				
Threshold	11 M_{\odot}	$27 \ M_{\odot}$			
$1 \ / \ 8 \ days$	2.5 kpc	kpc 5 kpc			
	KM3NeT 8 DUs				
	KM3NeT	8 DUs			
Threshold	KM3NeT	8 DUs 27 <i>M</i> ⊙			

p-values combined with Fisher's method to get χ^2_2 test statistic.


Foreseen **alert horizon** for full ORCA, full ARCA and full KM3NeT combined, assuming a false alert limit of *one in two weeks*, and the two simulated progenitors.

	ORCA 115 DUs		ARCA 230 DUs		KM3NeT combined	
Threshold	11 M_{\odot}	27 M_{\odot}	11 M_{\odot}	27 M_{\odot}	11 M_{\odot}	27 M _☉
$1 \ / \ 14 \ { m days}$	9.5 kpc	17 kpc	11 kpc	21 kpc	12.5 kpc	23 kpc

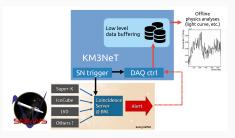
(Conservative background assumption at 1.5 Hz per DU for both detectors.)

Building the KM3NeT combined trigger

Commissioning of the **CCSN trigger** and of the **online neutrino search** progressing in parallel in the **common multi-messenger infrastructure**.

- CCSN trigger algorithms run independently at each detector;
- output monitored locally (performance, stability) and relayed to common endpoint for combined processing.

Design in progress of low-level data buffer for CCSN astrophysics studies.


KM3NeT meets SNEWS

Real-time processing

- data are relayed with a latency below two seconds compared to generation time off-shore;
- current SN processing has a 10 s buffering;
- combined trigger level can be estimated within 15 seconds;
- margin for optimisation (if necessary)!

Trigger and alert generation

- internal testing of the trigger combination is undergoing;
- testing of the SNEWS client and private server will follow soon;
- you will hear from us!

The CCSN detection algorithm developed for estimating the **sensitivity** is implemented as **online trigger**.

The current phase with three DUs across the two KM3NeT sites (1 ARCA + 2 ORCA) is seeing the commissioning of the **online framework**.

The **SN online monitoring** active at each shore station and first test of the **combined trigger** is ongoing.

Testing of the SNEWS infrastructure upcoming!

... more KM3NeT DUs to be connected!

