Models of Core-Collapse Supernovae

Evan O'Connor Stockholm University **Outline:**

- Core-Collapse Basics
- Status of the Field
- Neutrino Production
 (a selection)

Core Collapse Supernovae

- CCSNe are some of the brightest astrophysical phenomena in the modern universe.
- Astrophysical importance:
 - nucleosynthesis
 - trigger and regulate star formation
 - source of neutron stars and black holes.
- Unique and fantastic laboratory for studying high density/temperature and neutron rich conditions.
 - -> Need to observe central engine
 - Neutrinos!
 - Gravitational Waves!

Collapse Phase

- Most massive stars core collapse during the red supergiant phase
- CCSNe are triggered by the collapse of the iron core (~1000km, or 1/10⁶ of the star's radius)
- Collapse ensues because electron degeneracy pressure can no longer support the core against gravity

$$-\frac{3}{5} \left[\frac{GM^2}{1000 \text{ km}} - \frac{GM^2}{12 \text{ km}} \right] \sim 300 \times 10^{51} \text{ ergs}$$

$$-\frac{3}{5} \left[\frac{GM^2}{1000 \text{ km}} - \frac{GM^2}{12 \text{ km}} \right] \sim 300 \times 10^{51} \text{ ergs}$$

$$-\frac{1000 \text{ km}}{1000 \text{ km}}$$

$$-\frac{1.4 \text{ M}_{\text{sun}}}{1.4 \text{ M}_{\text{sun}}}$$

$$-\frac{30 \text{ km}}{200 \text{ km}}$$

$$-\frac{300 \text{ km}}{200 \text{ km}}$$

$$-\frac{1000 \text{ km}}{200 \text{ km}}$$

CCSNe: The Stages

CCSNe: The Stages

t = -5ms

- The prevailing mechanism is the turbulence-aided neutrino mechanism
 - Neutrinos from core heat outer layers
 - Drives convection
 - Turbulence pressure support aids heating and drive explosion
- Very successful in 2D*, many successful explosions
- Success in 3D too: fewer simulations

The Core-Collapse Supernova Problem

Understanding the transition from an imploding iron core to an exploding star has been a persistent and difficult problem in astrophysics.

Requires:

movie

EO & Couch (2018b)

Explosion Successes in multiD – 2D

Woosley & Heger (2007) progenitors

Evan O'Connor – SNEWS2.0 – 7 of 22

Woosley & Heger (2007) progenitors

Evan O'Connor – SNEWS2.0 – 7 of 22

Explosion Successes in multiD – 3D

Woosley & Heger (2007) progenitors

Evan O'Connor – SNEWS2.0 – 8 of 22

Explosion Successes in multiD – 3D

Woosley & Heger (2007) progenitors

Evan O'Connor – SNEWS2.0 – 8 of 22

Global effort towards agreement

- Want to demonstrate the community's ability to simulate SN
- Comparison of 6 core-collapse supernova codes
- *Very carefully* control input physics and initial conditions to ensure fair comparison

Global Comparison of Core-Collapse Supernova Simulations in Spherical Symmetry

Evan O'Connor¹, Robert Bollig^{2,3}, Adam Burrows⁴, Sean Couch^{5,6,7,8}, Tobias Fischer⁹, Hans-Thomas Janka², Kei Kotake¹⁰, Eric Lentz¹¹, Matthias Liebendörfer¹², O. E. Bronson Messer^{13,11}, Anthony Mezzacappa¹¹, Tomoya Takiwaki¹⁴, David Vartanyan⁴

Journal of Physics: G 45 10 2018

Evan O'Connor – SNEWS2.0 – 9 of 22

Excellent Agreement in 1D

Excellent Agreement in 1D

Neutronization Burst

- When the matter reaches nuclear density and the supernova shock forms, it liberates the nucleons from the nuclei
- Recently freed and no longer suppressed, protons now rapidly capture electrons, producing a burst of v_{ρ}

e

р

Evan O'Connor – SNEWS2.0 – 11 of 22

Neutronization Burst

- v_e's take a bit of time (few ms) before the density at the shock is low enough for the v's to escape
- anti- v_e and v_x neutrinos luminosity is low. anti- v_e are suppressed because high electron degeneracy, v_x because T is low
- Little progenitor dependence, universal* nature of collapse

Iron core mass increasing ->

Matter temperature increasing ->

Evan O'Connor – SNEWS2.0 – 12 of 22

Accretion Phase: Role of Neutrinos

- After the burst, v_e and anti- v_e emission is powered by accretion
- Infalling matter is shock heated and then is cooled via neutrino emission

Thermal production processes

- Thermal emission is dominant production process for heavy lepton neutrinos as T is too low for charged-current processes with μ 's and τ 's

р

e

Accretion Phase

- The accretion phase introduces first progenitor dependence of luminosities
 - High 'compactness': higher mass accretion -> more binding energy released -> higher luminosities
- Detection will reveal progenitor properties and constrain stellar evolution

Accretion Phase - SASI

Tamborra et al. (2013); Mirizzi et al. (2015)

- Standing Accretion Shock Instability (SASI) can impact signal, periodic variations.
- Observable in HyperK and IceCube, perhaps not Dune. Timescales too short: ~10ms

Evan O'Connor – SNEWS2.0 – 16 of 22

Rotation in Core-Collapse Supernovae

- Rotation impacts neutrinos
 - Less energy released, lower luminosities initially
- Rotating collapse excites the newly formed protoneutron star
 - Correlated signal in GWs and neutrinos

Rotation-induced Oscillations in neutrinos

• Must be close to see such small signal. In IceCube: ~1kpc

Westernacher-Schneider+ (2019 in prep)

*Realizations take into account statistical noise and detector background noise

Evan O'Connor – SNEWS2.0 – 18 of 22

- How the protoneutron star cools relays info about the EOS -> traced by neutrino emission
- Variations in neutrino luminosities and energies can be detectable and help constrain the nuclear EOS
- Particularly, differences in the <E> between $\overline{\nu}_e$ and ν_e is important and can impact nucleosynthesis

Not all core collapses will succeed

- Progenitors of Type II-P CCSNe suggest a maximum mass of ~16.5 +/- 1.5 M_{sun} – but RSG extend to 25 M_{sun}
- Stellar mass black holes exist!
- We have seen preliminary evidence that massive stars disappear, perhaps following a failed supernovae

Smartt (2015)

Not all core collapses will succeed

Smartt (2015)

- Progenitors of Type II-P CCSNe suggest a maximum mass of ~16.5 +/- 1.5 M_{sun} – but RSG extend to 25 M_{sun}
- Stellar mass black holes exist!
- We have seen preliminary evidence that massive stars disappear, perhaps following a failed supernovae

Evan O'Connor – SNEWS2.0 – 20 of 22

Not all core collapses will succeed

Smartt (2015)

- Progenitors of Type II-P CCSNe suggest a maximum mass of ~16.5 +/- 1.5 M_{sun} – but RSG extend to 25 M_{sun}
- Stellar mass black holes exist!
- We have seen preliminary evidence that massive stars disappear, perhaps following a failed supernovae

Evan O'Connor – SNEWS2.0 – 20 of 22

- Failure rate could be ~15%
- Smoking gun signature is prompt shutoff of neutrinos
- Would give detailed information regarding progenitor and nuclear EOS

- Failure rate could be ~15%
- Smoking gun signature is prompt shutoff of neutrinos
- Would give detailed information regarding progenitor and nuclear EOS

- Core Collapse models in multiD explode via the turbulence-aided neutrino mechanism, across codes and progenitors
- Models predict several interesting neutrino-signal-related phenomena
 - Neutronization Burst (Universal)
 - Neutrino mass ordering likely discernible from signal
 - Accretion Luminosity (probes progenitor)
 - SASI predicts large time variations in signal
 - Rotation predicts correlated neutrino and GW signals
 - Equation of State sets cooling curve over ~5-100s
 - Failed supernovae predict sharp cutoff on neutrinos