



# The SuperNova Early Warning System (SNEWS)

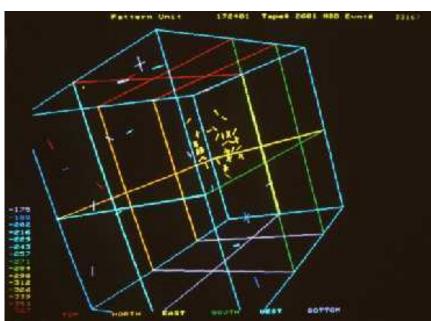
The current network, and things to improve upon

SNEWS2.0 workshop Friday June 14, 2019

Alec Habig, Univ. of Minnesota Duluth



**Origin Story** 



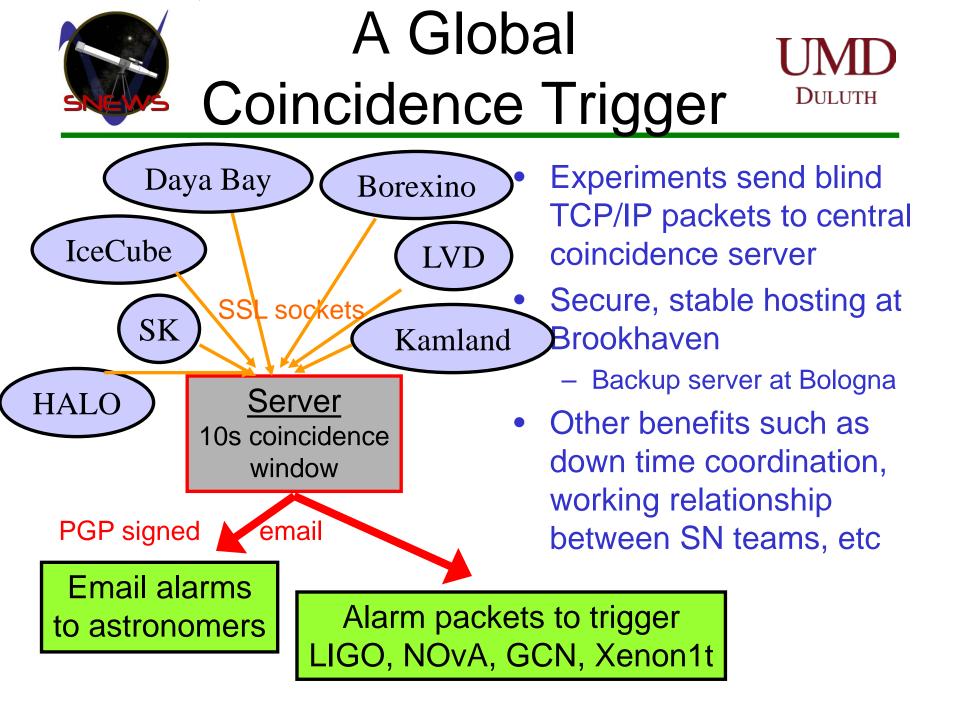

 At the neutrino meetings in 1996 (Helsinki) and 1998 (Takeyama), people were reminiscing about SN1987A and thinking about how we could do better in the future. This got Super-K, SNO, MACRO, and LVD together with John Bahcall.



←Humans noticed this first...

- ... and dug this off tape later  $\rightarrow$
- Despite v arriving  $\sim$ 1.5h before the  $\gamma$





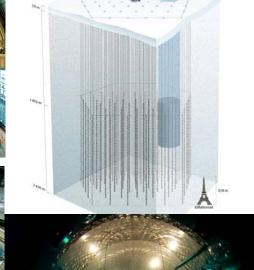

#### Astrophysical and Human time scales



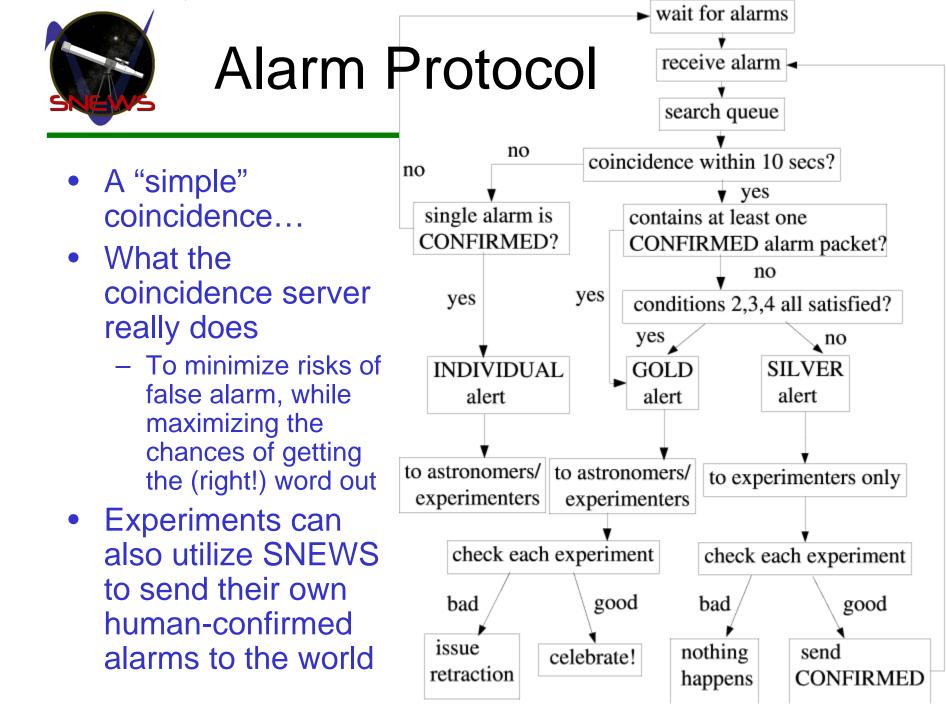
- v lead the photons because stars are opaque to  $\gamma$ , but transparent to v
  - $\gamma$  are produced when the shock wave breaks through the photosphere, ~hours after core collapse
- Of course, each experiment had a SN  $\nu$  trigger already to find a burst of  $\nu$ 
  - but routed the alarm through an on-call shifter to filter out false alarms from electronic noise, flashing PMTs, spallation by CRs, etc
  - Humans also take ~hour to weigh in
- But, two experiments will see the  $\nu$  at the same time, and are unlikely to have coincident noise
  - Can we help provide an opportunity to experiments to go faster if they want to?








## The Experiments




- Currently:
  - Super-K
  - LVD
  - IceCube
  - Borexino
  - Daya Bay
  - Kamland
  - HALO
- Alumni:
  - MACRO, SNO, AMANDA
- Operational but not SNEWS contributors:
  - Baksan, μBoone
- Near-Future participants
   NOvA, Km3Net, SNO+











# SNEWS' Goals

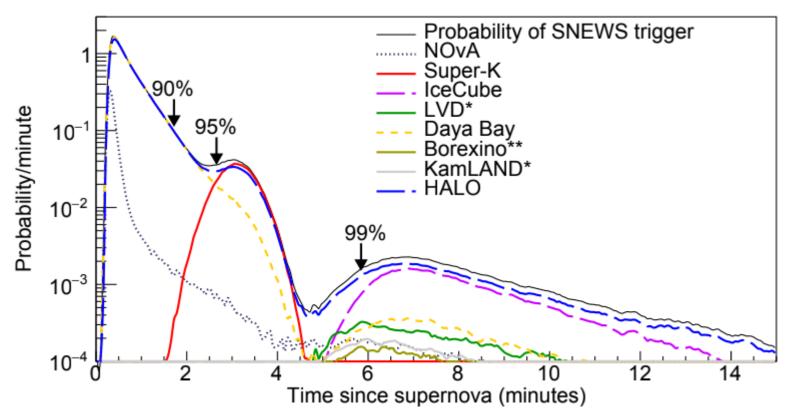


- At a workshop in Sept. 1998 at Boston U., neutrino physicists and astronomers came up with design goals: the "Three P's":
  - Prompt (<< 1 hour)</p>
  - Positive (false alarms < 1/century)</li>
  - Pointing
- Why?
- How well have we done in the nearly two decades we've been doing this?
  - Operational in test mode since 2001, fully operational July 1, 2005
- Should these goals change for the future?



## Prompt



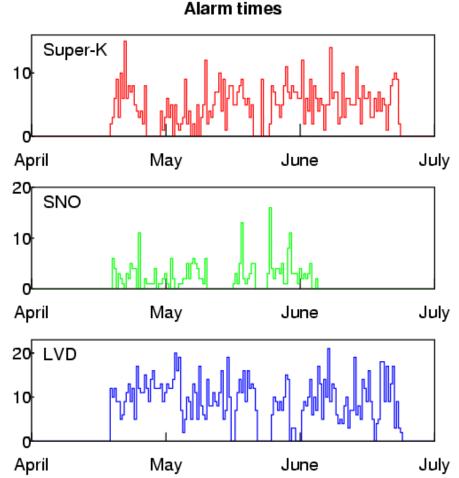

- Caveat: we have had no SNe in/near our galaxy since 1987: so SNEWS has never triggered
  - Something which confuses some fraction of the 6,190 snews-alert subscribers when they subscribe but then don't get alerts!
- What do we expect? Given a two-fold coincidence, the fastest two experiments to report set the delay
  - The SNEWS machinery itself responds in ~seconds



## Estimated delay



- Matt Strait (UofM) took published SN trigger delays combined with sensitivities, estimated SNEWS response time
  - NOvA triggers on SNEWS but has a limited buffer time






# Prompt?



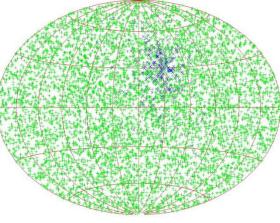
- We think so, within minutes
  - Faster would be better: eg, unraveling the mysteries of GRBs became possible when followups could happen within seconds
- We don't <u>know</u> so: aside from a "high rate test" in 2001 (*low thresholds, triggered on noise*) the machinery doesn't get exercised
  - eg, recent LIGO GW alerts started off with more delay than desired, as kinks were worked out with practice





#### Positive?



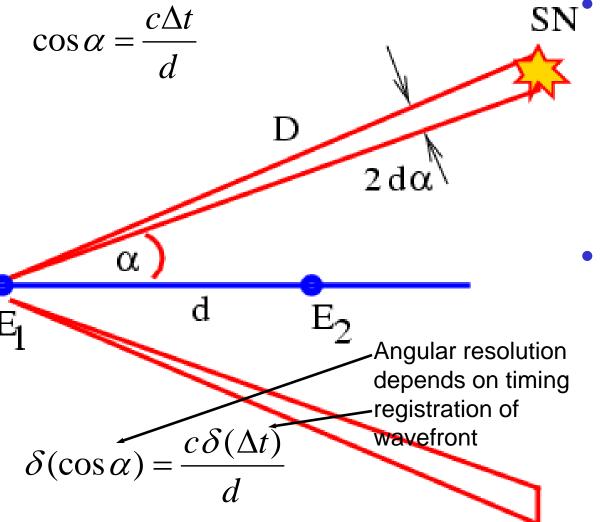

- No false alarms in two decades! (*knock on wood…*)
- The flip side is that we haven't had the full test of the pipeline which alarms (*false or otherwise*) would provide
  - 2001 high rate test exercised front end
  - 2003 "find Vesta" test exercised the back end
- What astronomers want has flipped 180° in those two decades:
  - 2000: "If you have even one false alarm, no one will ever believe you again"
  - Today: "Multi-messenger astronomy generates oodles of alerts, no problem!"



# Pointing?



- SNEWS cannot generate directionality on its own
- Super-K can point back to within ~4° using the sub-dominant electron elastic scatters
  - and will do this even better once
    Gd n captures tag IBD interactions




- Timing triangulation killed by statistics of leading edge of signal
  - Beacom&Vogel, astro-ph/9811350
  - ... or, is it?



## Triangulation





Look at arrival time difference of SN v wavefront at different detectors

- With 2 expts, circle on sky at angle  $\alpha$
- 3 expts 2 blobs
- 4 expts 1 point
- With modern detectors, and fitting the whole v light curve rather than just the leading edge, this might now be possible



## Improvements for SNEWS 2.0



- What can we do to update SNEWS to provide:
  - Multiple thresholds, to constantly exercise the machinery and to provide consumers with a "choose your own threshold" alert
  - Ability of experiments to compare v "light curves" real-time, to extract physics quickly: especially precision timing for triangulation
  - Get alerts out to the new networks, to best coordinate with modern multi-messenger networks



## New Physics for SNEWS 2.0



- Pre-supernova (*Si-burning*) v from nearby stars:
  - Kamland does this now on its own
  - SNO+ and JUNO will soon be able to as well, as can Super-K with Gd loading
  - This is an area where combining low statistics could let these experiments expand their range further into the galaxy
- Pointing:
  - DUNE and Hyper-K will have per-event directionality
  - SK will improve theirs with Gd tagging
  - Maybe SNEWS can contribute triangulation
  - A new opportunity to provide directionality combination for those experiments?



#### Tools needed



- The simple coincidence riding on the network protocol stolen from the first "e-sports" game ever (*netrek, early 1990's*) can't support these new goals (*and you wouldn't want to maintain it anyway*)
- What statistics are the best to compare experiments with extremely different signal rates and noise rates?
- What machinery is needed to reliably move that data from experiment to a SNEWS server?



- Whatever information a SNEWS server is consuming will need to be turned into something fairly "detector independent" by the experiments
  - So we're comparing apples to apples
- This requires a lot more work from an experiment than simply sending SNEWS a "saw a supernova!" timestamp
  - Work that can only be done by someone with a deep understanding of that particular detector



# White Paper



- Getting the information and plans discussed in this workshop into a white paper is a goal of this workshop
  - Goal: end of summer
- Topical working groups will tackle specific sections
- The panel discussions are hoped to be the seed for this



• Whitepaper

#### CONTENTS

#### Contents

|                            |    | Introduction                                                                                                                                                                                                                                                   | 3                          |
|----------------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Whitepaper                 | 2  | Stellar Core Collapse Signals      2.1    Science from Core-Collapse Multimessenger Astronomy      2.2    Neutrinos from Supernovae      2.3    Gravitational Wave Signals from Core Collapse      2.4    Electromagnetic Signals      2.5    Other Transients | 3<br>5<br>5<br>5<br>5      |
| outline and                | 3  | SNEWS 1.0      3.1    SNEWS 1.0 Configuration                                                                                                                                                                                                                  | 5<br>5                     |
| very rough draft<br>exists | 4  | SNEWS2.0      4.1    Lowering the Threshold      4.2    Latency      4.3    Optimizing Uptime                                                                                                                                                                  | 6<br>6<br>6                |
|                            | 5  | Pointing to the Supernova with Neutrinos                                                                                                                                                                                                                       | 6                          |
|                            | 6  | Presupernova Neutrinos                                                                                                                                                                                                                                         | 7                          |
|                            | 7  | The SNEWS Alert and Followup      7.1    Real-Time Algorithmics      7.2    Multimessenger Follow-Up      7.3    Alert Broadcasting and Optimized Observing Strategies      7.4    Data Sharing      7.5    Walkthrough Example                                | 7<br>7<br>7<br>7<br>7<br>7 |
|                            | 8  | Education and Public Outreach<br>8.1 Amateur Astronomers                                                                                                                                                                                                       | 7<br>7                     |
|                            | 9  | Summary                                                                                                                                                                                                                                                        | 7                          |
|                            | 10 | Appendix: Supernova-Neutrino Sensitive Detectors                                                                                                                                                                                                               | 7                          |
|                            | 11 | References                                                                                                                                                                                                                                                     | 7                          |



## Summary



- While one of the ~200 SNe v wavefronts currently traversing our galaxy hasn't arrived since 2000, we've been ready with a simple coincidence trigger
- Experimental capabilities have evolved
- Real-time multi-messenger astronomy is now a thing
- Let's figure out how to get the world the most SN neutrino information in the least amount of time
  - An opportunity for gaining information that together is greater than the sum of its parts



## Acknowledgements



- SNEWS currently supported by NSF collaborative grant #1505960
  - Alec Habig @ UofM Duluth
  - Kate Scholberg @ Duke



- SNEWS only functions with the cooperation of member experiments and their SN teams, Brookhaven, and INFN Bologna
- New NSF Windows on the Universe award "A Next-Generation SuperNova Early Warning System for Multimessenger Astronomy" will be to Purdue, Duke, Duluth, MIT, Houston, Rochester, Laurentian, and Virginia Tech: Proposal PHY-1914448