Supernova Neutrinos in the Multi-Messenger Era, SNEWS 2.0 June 15, 2019

Supernova Neutrino Detection

M.Nakahata

Kamioka Observatory ICRR/IPMU, Univ. of Tokyo

<u>Contents</u>

Introduction

- What we have learned from SN1987A
- What we want to learn in the next supernova

Supernova detectors in the world

- History of detectors
- Detector type
- What kind of data are expected in each detector

Future large volume detectors for supernova

I will concentrate on burst neutrino detection by usual interactions. CEvNS detection will be presented by Rafael Lang this afternoon. Pre-supernova detection will be presented by Chinami Kato and Volodymyr Takhistov tomorrow, and presented by a poster by Koji Ishidoshiro yesterday.

SN1987A: supernova at LMC(50kpc)Kamiokande-IIIMB-3BAKSAN

2140 ton fiducial Water Cherenkov

Ohio state Morton mine, USA ~5000 ton Fiducial Water Charenkov

Baksan tunnel, Russia 330 ton in 3150 tanks Liquid scintillator

Observed events

Total energy released by \overline{v}_{e} was measured to be ~5x10⁵² erg.

The measured energy was consistent with core-collapse scenario.

Large error in neutrino mean energy.

No detailed information of burst process was observed because of low statistics.

SN1987A: supernova at LMC(50kpc) Kamiokande-II IMB-3 BAKSAN

Kamioka mine, Japan 2140 ton fiducial Water Cherenkov

Ohio state Morton mine, USA ~5000 ton Fiducial Water Charenkov

Baksan tunnel, Russia 330 ton in 3150 tanks Liquid scintillator

History of supernova detectors

The Baksan underground scintillation telescope (Russia)

~30 $\overline{v}_e p \rightarrow e^+ n$ events expected for 10 kpc SN. Running since 1980. Sensitive up to ~20 kpc.

No candidate (except for SN1987A) for 33.02 years' observation time from June 1980 to December 2018. Upper limit of SN rate: < 7.0 /century (90% C.L.) (from V. Petkov, will be presented in TAUP2019).

LVD detector (at Gran Sasso, Italy)

LVD consists of an array of 840 counters, 1.5 m³ each.

Total target: 1000 t liquid scintillator

4MeV threshold

With <1MeV threshold for delayed signal (neutron tagging efficiency of 50 +- 10 %)

E resolution: $13\%(1\sigma)$ at 15MeV

~300 $\overline{v_e}p \rightarrow e^+n$ events expected for 10 kpc SN.

No candidate for 8577 days from 1992 to 2017. Upper limit of SN rate: < 0.098 /yr (90% C.L.)

C.Vigorito et al., ICRC2017

Supernova burst detectors in the world now

Summary of supernova neutrino detectors

Detector	Туре	Location	Mass (kton)	Events @ 10 kpc	Status
Super-K	Water	Japan	32	8000	Running (SK V)
LVD	Scintillator	Italy	1	300	Running
KamLAND	Scintillator	Japan	1	300	Running
Borexino	Scintillator	Italy	0.3	100	Running
IceCube	Long string	South Pole	(600)	(10^{6})	Running
Baksan	Scintillator	Russia	0.33	50	Running
Mini- BooNE	Scintillator	USA	0.7	200	(Running)
HALO	Lead	Canada	0.079	20	Running
Daya Bay	Scintillator	China	0.33	100	Running
ΝΟνΑ	Scintillator	USA	15	3000	Running
SNO+	Scintillator	Canada	1	300	(Running)
MicroBooNE	Liquid argon	USA	0.17	17	Running
DUNE	Liquid argon	USA	40	3000	Future
Hyper-K	Water	Japan	540	110,000	Future
JUNO	Scintillator	China	20	6000	Future
IceCube Gen-2	Long string	South pole	(600)	(10 ⁶)	Future

plus reactor experiments, DM experiments...

From K. Scholberg

Single volume liquid scintillator detectors

KamLAND

1000ton liq.sci. Running since 2002.

1000ton liq.sci. Under construction.

Energy spectrum expected at the liquid scintillation detectors

IceCube (South pole)

IceCube detector

- Number of Optical modules: 5160
- 10-inch PMTs in each optical module
- Number of strings: 86
- Instrumented volume: 1 km³

Supernova neutrinos coherently increase single rates of PMTs.

High frequency signal variation by SASI SASI=standing accretion shock instability

IceCube – HitSpooling and directional information

HitSpool Interface (installed in 2013)

DOMHubs

The HitSpool Interface enables

- Record all hit information in 90sec data around the burst with full data stream.
- Use correlation of hits of DOMs to estimate mean energy with a resolution of about 30% at 10 kpc.

2013 ICRC Proceeding by V. Baum

Super-K: Number of events

Livermore simulation T.Totani, K.Sato, H.E.Dalhed and J.R.Wilson, ApJ.496,216(1998) Nakazato et al. K.Nakazato, K.Sumiyoshi, H.Suzuki, T.Totani, H.Umeda, and S.Yamada, ApJ.Suppl. 205 (2013) 2, (20M_{sun}, trev=200msec, z=0.02 case)

Sensitivity of Super-K for the model discrimination

For 10kpc supernova

Super-K: directional information

Gadolinium project at Super-K: SK-Gd

Identify $\overline{v_e}p$ events by neutron tagging with Gadolinium.

Gadolinium has large neutron capture cross section and emit 8MeV gamma cascade.

Plan to start 0.01%Gd phase in early 2020.

In case of Galactic supernova

Improve pointing accuracy

If \overline{v}_e can be tagged and subtracted from the plot, directional events (v+e scattering events) can be enhanced and pointing accuracy can be improved.

SK-Gd: Pointing accuracy with neutron information

Pointing accuracy can be improved by neutron anti-tagging.

Electromagnetic follow up

Optical magnitude

0.1

-5

10

Optical magnitude

5

0

15

20

25

Future Large Volume Detectors

<u>JUNO(China)</u> (20kton Liq. Sci.)

Precise measurement of average energy and luminosity for all neutrino flavors.

~1% for <E> for \overline{v}_e ~10% for <E> for v_e ~5% for <E> for v_χ DUNE/LBNF (US) (40 kton Liq. Ar)

 ν_{e} + ^{40}Ar $\rightarrow e^{\text{-}}$ + $^{40}\text{K}^{\star}$ is the dominant interaction.

~3000 $v_{\rm e}$ events for 10kpc SN.

<u>Hyper-Kamiokande</u> (220 kton Water)

50k~80k $\overline{v}_e p$ events for 10 kpc supernova. Precise measurement of time variation.

1~2 deg. pointing accuracy.

Detection of supernova neutrinos at nearby galaxies.

JUNO: Expected signals

Expected number of events for a SN @ 10 kpc

- 1) IBD events dominate at the high energy range
- 2) nu-p ES channel dominates at low energies
- 3) coincidence events vs. singles events
- 4) e. vs. p discrimination: Pulse shape discrimination

Channel			Number of SN Neutrino Events at JUNO			
Channel	Туре		No Oscillations	Normal Ordering	Inverted Ordering	
$\overline{\nu}_e + p \rightarrow e^+ + n$	$\mathbf{C}\mathbf{C}$		4573	4775	5185	
	DQ		1578	1578	1578	
		ν_e	107	354	278	
$\nu + p \rightarrow \nu + p$	Еð	$\overline{\nu}_e$	179	214	292	
		ν_x	1292	1010	1008	
			314	316	316	
	DO	ν_e	157	159	158	
$\nu_e + e \to \nu_e + e$	ES	$\overline{\nu}_e$	61	61	62	
		ν_x	96	96	96	
$\nu_e + {\rm ^{12}C} \rightarrow e^- + {\rm ^{12}N}$	$\mathbf{C}\mathbf{C}$		43	134	106	
$\overline{\nu}_e + {}^{12}\mathrm{C} \rightarrow e^+ + {}^{12}\mathrm{B}$	$\mathbf{C}\mathbf{C}$		86	98	126	
			352	352	352	
	NO	ν_e	27	76	61	
$\nu + {}^{-1}C \rightarrow \nu + {}^{-1}C'$	NC	$\overline{ u}_e$	43	50	65	
		ν_x	282	226	226	
$\nu_e + {\rm ^{13}C} \rightarrow e^- + {\rm ^{13}N}$	$\mathbf{C}\mathbf{C}$		19	29	26	
		$3/2^{-}(5/2^{-})$) 23(15)	23(15)	23(15)	
	NC	ν_e	3(1)	4(3)	4(2)	
$\nu + {}^{*}\mathrm{C} \rightarrow \nu + {}^{*}\mathrm{C}^{*}$	NU	$\overline{\nu}_e$	3(2)	4(2)	4(3)	
		ν_x	17(12)	15(10)	15(10)	

Lu, YFL, Zhou, PRD 2016

JUNO: Sensitivity for each neutrino flavor

DUNE: Expected time profile and spectrum

Flavor composition as a function of time

Energy spectra integrated over time

For 40 kton @ 10 kpc, Garching model (no oscillations)

DUNE: effect of neutrino oscillations

Note that the neutronization burst gets substantially suppressed with flavor transitions 40 kton argon, 10 kpc

Hyper-K: high statistics measurement

Supernova rate in nearby galaxies

Hyper-K: supernova neutrino from nearby galaxies

Horiuchi, Beacom, Bothwell, and Thompson, J. 769 (2013) 113

Supernova rate based on observed supernovae from 2000 to 2011 (w/ and w/o SN2008S-like dim supernova), and expectation from UV observation. 5~ 8 SNe/20years (11 CCSNe) 2~ 3 SNe/20years (ROT-UV)

Conditions:

- Livermore simulation
- At least one event with 10MeV threshold
- ➤ # range for no osc., N.H. and I.H.
- Not include M31, i.e. <1Mpc are not included 29</p>

Conclusions

- Many detectors in the world are waiting for next supernova.
- Large number of neutrino events are expected at various detectors.
 - Various interaction modes are detected in liquid scintillation detectors.
 - Study of fine time structure by IceCube.
 - Good pointing accuracy by Super-K and will be improved by SK-Gd.
- Future large volume detectors will give detailed information.
 - Precise energy measurement of all neutrino types by JUNO.
 - v_e measurement by DUNE.
 - 1~2 deg. level pointing accuracy and nearby galaxy SN by Hyker-K.