Project 8 and Neutrino Mass

A frequency based approach to measure the neutrino mass

Karsten M. Heeger Yale University

CERN October 2019

Paths to the Neutrino Mass Scale

h for 0vββ	β-decay & electron capture
$= \left \sum_{i} U_{ei}^2 m_i\right ^2$	$m_{\beta}^2 = \sum_i U_{ei} ^2 m_i^2$
- 0.4 eV	2 eV
200 meV 40 meV)	200 meV (40 – 100 meV)
ana nature of v , number violation contributions than m(v)? ar matrix elements	Direct , only kinematics; no cancellations in incoherent sum

Valerius

Cosmology measures

Double beta decay measures

Direct searches measure

m_v measurable both by laboratory experiments and cosmology a critical test of consistency

Karsten Heeger, Yale University

Mezetto

Cosmology measures

Double beta decay measures

Direct searches measure

 $\sum m_i$ $\sum U_{ei}^2 m_i$ $\left(\sum_{i}|U_{ei}^2|m_i^2\right)^{1/2}$

mv measurable both by laboratory experiments and cosmology a critical test of consistency

Mezetto

Cosmology measures

Double beta decay measures

Direct searches measure

 $\sum m_i$ $\sum U_{ei}^2 m_i$

mv measurable both by laboratory experiments and cosmology a critical test of consistency

"consistency would be spectacular confirmation!"

Karsten Heeger, Yale University

Mezetto

Cosmology measures

Double beta decay measures

Direct searches measure

 $\sum m_i$ $\sum U_{ei}^2 m_i$

mv measurable both by laboratory experiments and cosmology a critical test of consistency

"inconsistency would be major discovery"

: Mainz+Troitsk β **0vββ: KL-Zen**, GERDA, EXO, Cuore... : CMB+LSS Σ 10-1 m_β (eV) NO 10 10-3 10 10 10 m_{ββ} (eV) 10-2 10-2 10-3 10 10⁻² 10-3 10⁻¹ 10⁻¹ m_β (eV) Σ (eV)

Mezetto

Future of Cosmological Neutrino Bounds

Example Forecast: EUCLID + Planck + Simon's Observatory

A. Boylea, E. Komatsua, JCAP 2018

Karsten Heeger, Yale University

Complementary Neutrino Mass Limits

Karsten Heeger, Yale University

β/EC decay experiments

S. Boeser with input from www.nu-fit.org

Complementary Neutrino Mass Limits

0vββ decay experiments

 β /EC decay experiment limits correlate with the exposure scale required for a definite observation of 0vββ in IMO scenario.

Neutrinos and Beta Spectrum

first evidence of neutrino from continuous beta spectrum

> .3 $N \rightarrow N' + e^{-}$ some nuclei emit electrons! Ν . 12 4 8 ×105 20 16 V relectron volts)

Chadwick, 1914

Pauli, 1930

ie Gruppe der Radicaktiven bei der an Tibingen.

titut hen Hochschule

Zirich, 4. Des. 1930 **Dioriastrasss**

Liebe Radioaktive Damen und Herren,

Wie der Veberbringer dieser Zeilen, den ich huldvollst ansuhören bitte, Ihnen des näheren auseinendersetten wird, bin ich angesichts der "felschen" Statistik der N- und Li-6 Kerne, sowie des kontinuisrlichen beta-Spektrums suf einen versweifelten Ausweg verfallen um den "Wecheelsats" (1) der Statistik und den Energiesats zu retten. Mämlich die Möglichkeit, es könnten elektrisch neutrele Telloben, die ich Neutronen nennen will, in den Lernen existieren, weiche dem Spin 1/2 heben und das Ausschliessungsprinzip befolgen und eles von Lichtquanten musserden noch dadurch unterscheiden, da micht mit Lichtgeschwindigkeit laufen. Die Masse der Neutrone Masste von derzelben Grossenordnung wie die Elektronenwesse so jehenfelle nicht grösser als 0.01 Protonenwesse- Das kontinui a hypothesis bein- Spektrum wäre dann varständlich unter der Annahme, dass beim beta-Zerfall ait dem blektron jeweils noch ein Meutron emittiert wird, derart, dass die Summe der Energien von Mentron und Miektron konstant ist.

E. Fermi, Zeitschrift fur Physik 1934

Neutrino Mass and Tritium Beta Decay Endpoint

Finite neutrino mass modifies the decay electron spectrum!

Idealized situation:

- 1. Super-allowed β⁻-decay of *isolated* atom
- 2. Single neutrino mass state

With Coulomb distortion for T_{nuc} and neutrino mixing:

$$\frac{dN}{dE_{\rm e}} = \underbrace{\frac{G_{\rm F}^2 m_{\rm e}^5 \cos^2 \theta_{\rm C}}{2\pi^3 \hbar^7}}_{\times \sqrt{(E_{\rm max} - E_{\rm e})^2 - m_{\nu \rm i}^2}} F(Z, E_{\rm e}) p_{\rm e} (E_{\rm e} + m_{\rm e}) \sum_{i} |U_{\rm ei}|^2 (E_{\rm m}) e_{\rm e} (E_{\rm e} + m_{\rm e}) \left[\frac{1}{2} (E_{\rm m}) e_{\rm e} (E_{\rm e} + m_{\rm e}) \left[\frac{1}{2} (E_{\rm m}) e_{\rm e} (E_{\rm e} + m_{\rm e}) e_{\rm e} (E_{\rm e} + m_{\rm e}) \right]} \right]$$

State-of-the-art Technology for T2: MAC-E filter

Magnetic Adiabatic Collimation with Electrostatic filter A. Picard et al., Nucl. Instr. Meth. B 63 (1992)

Karsten Heeger, Yale University

12

Neutrino Mass from Tritium Experiments

Tritium spectrometers have been workhorse of endpoint measurements for decades

Complicated molecular final states and incomplete de-excitation has yielded non-real mass values

More recent improved theory calculations can correct select previous results

L. Bodine et al. PRC 91 035505 (2015)

KATRIN Overview

Karsten Heeger, Yale University

KATRIN

tritium scanning – fitting of spectrum

- fit of integrated experimental energy spectrum to theoretical model with **4** free parameters
 - leave parameters A_s and E₀ unconstrained 'shape-only' fit

merged data set

- combine all 274 scans: excellent stability of all fitted ß-decay endpoints $E_0 (\sigma = 0.25 \text{ eV})$
 - ⇒ "stacking" of events at mean HV set-point (excellent reproducability: RMS = 34 mV)

Drexlin, TAUP 2019

KATRIN

Integral tritium ß-decay spectrum

High-statistics &-spectrum

- 2 million events in in 90-eV-wide interval (522 h of scanning)
- excellent goodness-of-fit $\chi^2 = 21.4$ for 23 d.o.f. (p-value = 0.56)

bias-free analysis

- blinding of FSD
- full analysis chain first on MC data sets
- final step: unblinded FSD for experimental data

v-mass and E₀: best fit results

$$m^2(v_e) = \left(-1.0 + 0.9 \\ -1.1\right)e^{-1.1}$$

Karsten Heeger, Yale University

Drexlin, TAUP 2019

eV² (90% CL)

Direct Neutrino Mass Searches

Tritium experiments define the mass limit. Where will we be in 2030?

Karsten Heeger, Yale University

Challenges for Sensitivity Beyond KATRIN

S. Boeser with input from www.nu-fit.org

Technical challenges:

- 1. Statistical nature of e- scattering in gas column
- 2. e⁻ can be scattered into angular acceptance cone of the MAC-E filter
- 3. Rydberg atoms as background source

18

Project 8: Cyclotron Radiation Emission Spectroscopy of T2

- 1. Start with an enclosed volume
- 2. Fill with tritium gas
- 3. Add a magnetic field

B. Monreal and J. Formaggio, Phys. Rev. D80 051301 (2009)

4. Decay electrons spiral around field lines

5. Add antennas to detect the cyclotron radiation

Project 8: Cyclotron Radiation Emission Spectroscopy of T2

- Cyclotron radiation from single electrons
- Source transparent to microwave radiation
- No e⁻ transport from source to detector
- Highly precise frequency measurement

$$f_{\rm c} = \frac{f_{\rm c,0}}{\gamma} = \frac{1}{2\pi} \frac{e}{m_{\rm e} + z}$$

$$P(E_{\rm kin}, m, \theta) = \frac{1}{4\pi\epsilon_0} \frac{2}{3} \frac{e^4}{m^4 c^5} B^2 \left(E_{\rm kin}^2 + 2E_{\rm kin} m c^2 \right) \sin^2 \theta$$

 $P(17.8 \,\mathrm{keV}, 90^\circ, 1 \,\mathrm{T}) = 1 \,\mathrm{fW}$ $P(30.2 \text{ keV}, 90^{\circ}, 1 \text{ T}) = 1.7 \text{ fW}$

Small but readily detectable with state of the art detectors

CERN, October 9, 2019

Electron kinetic energy / keV

Project 8 in a waveguide with magnetic trap

Energy resolution vs. frequency resolution

 $\frac{\Delta E_{\rm kin}}{E_{\rm kin}} = \left(1 + \frac{m_{\rm e}c^2}{E_{\rm kin}}\right) \frac{\Delta \nu_{\rm c}}{\nu_{\rm c}}$ $\approx 28 \quad \text{for 18.6 keV electron}$ $\Delta E_{\rm kin} \approx 0.2 \, {\rm eV} \rightarrow \frac{\Delta \nu_{\rm c}}{\nu} \approx 4 \times 10^{-7}$

To cryogenic amplifier + heterodyne mixing stage + signal digitizer

$$\nu_{\rm c} \approx 27 \,{\rm GHz} \rightarrow \Delta \nu_{\rm c} \approx 11 \,{\rm kHz}$$

Frequency resolution vs. observation time $\Delta \nu_{\rm c} \times t_{\rm obs} \ge \frac{1}{2\pi} \to t_{\rm obs} \ge 14\,\mu{\rm s}$

→ Need for a magnetic (no work) trap!

Project 8: Single Electron Detection First Detection of Cyclotron Radiation from single keV electron

Project 8 - A Staged Approach

Phase – I: 2010-2016 – proof-of-principle test measurements with ^{83m}Kr CRES observed for first time

Phase – II: 2015-2019 - tritium CRES demonstrator first tritium data 2018 several days of runs fitted ß-decay endpoint: E₀ = (18.526 ± 0.09) keV new 2019 campaign to begin soon (100 d)

Karsten Heeger, Yale University

multiple trapping coils

Kr/T₂ gas handling system attached

The newly assembled instrument

Insert cryostat -

NMR magnet providing background magnetic field

Picture: Alec Lindman

Project 8: A High Precision Measurement

- Preliminary model includes intrinsic line width and Gaussian instrument resolution
- Line width: 2.8 ± 0.1 eV (FWHM)
- Instrumental width: 2.0 ± 0.5 eV (FWHM)

Project 8 Phase II: First Observation of Tritium Events

Project 8 - The Future

 Phase – III: ... – a large volume demonstrator tritium spectrum for $m(v_e) \sim 2 eV$

O Phase – IV: ... – towards an atomic tritium source

Project 8: Phase III

> Inwards-looking antenna array watches electrons radiating cyclotron power in free space

Project 8: Phase III

> Single electrons resolvable in simulation

Atomic Tritium

> Sensitivity beyond inverted hierarchy requires atomic tritium

Phase IV Concept

> Use magnetic moment of atomic species to guide and trap – Unpaired electron of atomic T (or H, D) gives it magnetic moment

A: Atomic tritium production **B: Transport and preparation C: Trapping and measurement**

Karsten Heeger, Yale University

CERN, October 9, 2019

Towards the Future - Next Discoveries

Towards the Future - Next Discoveries

Karsten Heeger, Yale University

Summary

We have demonstrated Cyclotron Radiation Emission Spectroscopy as a novel technique with a promising future in a next-generation neutrino mass experiment

Phase I achieved few-eV resolution of ^{83m}Kr spectrum • Approaching natural linewidth of ^{83m}Kr source

- Phase II tritium data taking ongoing Challenges of continuous spectrum measurement being met

R&D underway towards scaling CRES technique, atomic tritium for next generation endpoint measurement

Project 8 Collaboration

JGU

Case Western Reserve University

- Laura Gladstone, Benjamin Monreal, Yu-Hao Sun
- Harvard-Smithsonian Center for Astrophysics
 - Sheperd Doeleman, Jonathan Weintroub, André Young

Johannes Gutenberg-Universität Mainz

Lawrence Livermore National Laboratory

- Sebastian Böser, Christine Claessens, Martin Fertl, Michael Gödel, Alec Lindman

SKIT

Karlsruher Institut für Technologie

Thomas Thümmler

Kareem Kazkaz, Lucie Tvrznikova Massachusetts Institute of Technology

- Zachary Bogorad, Nicholas Buzinsky, Joseph Formaggio, Evan Zayas

cific Northwest 44TIONAL LABORARD

Pacific Northwest National Laboratory

- Mathieu Guigue, Mark Jones, Benjamin LaRoque, Erin Morrison, Noah Oblath, Malachi Schram, Jonathan Tedeschi, Brent VanDevender, Mathew Thomas, Maurio Grando

Pennsylvania State University

Luiz de Viveiros, Timothy Wendler, Andrew Ziegler

University of Washington

 Ali Ashtari Esfahani, Raphael Cervantes, Peter Doe, Eric Machado, Elise Novitski, Walter Pettus, Hamish Robertson, Leslie Rosenberg, Gray Rybka

Yale University

- Karsten Heeger, James Nikkel, Luis Saldaña, Penny Slocum, Pranava Surukuchi, Arina Telles

This work was supported by the US DOE Office of Nuclear Physics, the US NSF, the PRISMA+ Cluster of Excellence at the University of Mainz, and internal investments at all collaborating institutions

P8 slides on behalf of collaboration

