# Neutrinos in Cosmology

Isabel M. Oldengott
University of Valencia and IFIC

7-11 October 2019, Geneva Neutrino Platform Week 2019: Hot Topics in Neutrino Physics





~ 1 MeV: neutrino decoupling

→ cosmic neutrino background:

Temperature:

$$T_{\nu}^{0} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma}^{0}$$
  
= 1.95 K

Number density:

$$n_{\nu}^{0} \approx 112 \, \mathrm{cm}^{-3}$$

Energy density:

$$\rho^{rad} \equiv \left[ 1 + \frac{7}{8} \left( \frac{4}{11} \right)^{4/3} N_{\text{eff}} \right] \rho_{\gamma}$$

Standard:  $N_{eff} = 3.045$  (de Salas & Pastor 2016) 1



~ 1 MeV: neutrino decoupling

→ cosmic neutrino background:

Temperature:

$$T_{\nu}^{0} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma}^{0}$$
  
= 1.95 K

Number density:

$$n_{\nu}^{0} \approx 112 \, \mathrm{cm}^{-3}$$

Energy density:

Ways to enhance N
$$_{\rm eff}$$
: 
$$\rho^{rad} \equiv \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N_{\rm eff}\right] \rho_{\gamma}$$
 species, chemical potentials, distribution, etc. Standard:  $N_{\rm eff} = 3.045$  (de Salas & Pastor 2016) 1

### Assumptions about neutrinos made in ACDM

- Neutrinos are free-streaming after 1 MeV (i.e. they are stable and have no interactions)
- Neutrinos follow a relativistic Fermi-Dirac spectrum
- They have a temperature of  $T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma}$
- There are as many neutrinos as anti-neutrinos (negligible lepton asymmetry)

### Assumptions about neutrinos made in ACDM

- Neutrinos are free-streaming after 1 MeV (i.e. they are stable and have no interactions)
- Neutrinos follow a relativistic Fermi-Dirac spectrum
- They have a temperature of  $T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma}$
- There are as many neutrinos as anti-neutrinos (negligible lepton asymmetry)

What can cosmology teach us about neutrinos?

 $\rightarrow$  Let's first look at  $N_{\rm eff}$  and  $\Sigma m_{\nu}$ 

Early times: weak interactions

$$p + \bar{\nu}_e \leftrightarrow n + e^+$$

$$p + e^- \leftrightarrow n + \nu_e$$

$$n \leftrightarrow p + e^- + \bar{\nu}_e$$

Early times: weak interactions  $\longrightarrow$   $\mathcal{O}(1\,\mathrm{MeV})$ 

$$p + \bar{\nu}_e \leftrightarrow n + e^+$$
  
 $p + e^- \leftrightarrow n + \nu_e$ 

$$n \leftrightarrow p + e^- + \bar{\nu}_e$$

freeze-out

$$\left(\frac{n}{p}\right)_{\rm eq} \approx e^{-(m_{\rm n} - m_{\rm p})/T}$$

Early times: weak interactions

$$\begin{array}{c} p + \bar{\nu}_e \leftrightarrow n + e^+ \\ p + e^- \leftrightarrow n + \nu_e \end{array}$$

$$n \leftrightarrow p + e^- + \bar{\nu}_e$$

$$\rightarrow \mathcal{O}(1 \,\mathrm{MeV}) \longrightarrow \mathcal{O}(0.1 \,\mathrm{MeV})$$

freeze-out

$$\left(\frac{n}{p}\right)_{\rm eq} \approx e^{-(m_{\rm n} - m_{\rm p})/T}$$

Onset of nuclear reactions

$$\left(\frac{n}{p}\right)_{\rm BBN} \approx \frac{1}{7}$$

 $\rightarrow$  <sup>2</sup>H, <sup>3</sup>H, <sup>3</sup>He, <sup>4</sup>He etc.

Early times: weak interactions

$$\longrightarrow \mathcal{O}(1 \,\mathrm{MeV}) \longrightarrow \mathcal{O}(0.1 \,\mathrm{MeV})$$

$$p + \bar{\nu}_e \leftrightarrow n + e^+$$
 $n + e^+ \leftrightarrow n + \nu_e$ 

$$n \leftrightarrow p + e^- + \bar{\nu}_e$$

freeze-out

$$\left(\frac{n}{p}\right)_{\rm eq} \approx e^{-(m_{\rm n}-m_{\rm p})/T}$$



Onset of nuclear reactions

$$\left(\frac{n}{p}\right)_{\rm BBN} \approx \frac{1}{7}$$



 $\rightarrow$  <sup>2</sup>H, <sup>3</sup>H, <sup>3</sup>He, <sup>4</sup>He etc.

Expansion rate ( $N_{eff}$ ), distribution function (only  $v_e$ )



**Neutrinos** 

Early times: weak interactions

$$\longrightarrow \mathcal{O}(1 \,\mathrm{MeV}) \longrightarrow \mathcal{O}(0.1 \,\mathrm{MeV})$$

$$p + \bar{\nu}_e \leftrightarrow n + e^+$$

$$p + e^- \leftrightarrow n + \nu_e$$

$$n \leftrightarrow p + e^- + \bar{\nu}_e$$

freeze-out

$$\left(\frac{n}{p}\right)_{\rm oc} \approx e^{-(m_{\rm n}-m_{\rm p})/T}$$



Onset of nuclear reactions

$$\left(\frac{n}{p}\right)_{\rm BBN} \approx \frac{1}{7}$$

 $\rightarrow$  <sup>2</sup>H, <sup>3</sup>H, <sup>3</sup>He, <sup>4</sup>He etc.

Expansion rate ( $N_{eff}$ ), distribution function (only  $v_e$ )



#### **Neutrinos**

$$Y_{
m p} = 0.2449 \pm 0.004$$
 (Aver et al. 2015)  $y_{
m DP} = 2.527 \pm 0.030$  (Cooke et al. 2018)

$$N_{\text{eff}} = 2.92 \pm 0.2 \, (68\% \, \text{CL})$$

(Pitrou et al. 2018, PRIMAT code)

$$N_{\text{eff}} = 2.87^{+0.24}_{-0.21} (68\% \text{ CL})$$

(Consiglio et al. 2018, PArthENoPE code) 3

## Cosmic Microwave Background $\mathcal{O}(0.3\,\mathrm{eV})$

**Recombination** → Universe gets transparent to photons

### Cosmic Microwave Background $\mathcal{O}(0.3\,\mathrm{eV})$

#### **Recombination** → Universe gets transparent to photons



### Cosmic Microwave Background $\mathcal{O}(0.3\,\mathrm{eV})$

**Recombination** → Universe gets transparent to photons



Fluctuations in the photon temperature/density:



### Neutrinos behave at early times as radiation, at late times matter



### Neutrinos behave at early times as radiation, at late times matter



### Neutrinos behave at early times as radiation, at late times matter

Whenever we talk about the impact of neutrino masses –  $\Omega_\Lambda + \Omega_b + \Omega_{cdm} + \Omega_
u = 1$ 



$$N_{\text{eff}} = 2.92^{+0.36}_{-0.37} (95\% \text{ CL})$$

 $\sum m_{\nu} < 0.257 \, \text{eV}(95\% \, \text{CL})$ 

(TT,TE,EE+lowE)

(TT,TE,EE+lowE)

Planck 2018

### Large Scale Structure

Free-streaming suppresses the growth of structure below the free-streaming length



### Large Scale Structure

Free-streaming suppresses the growth of structure below the free-streaming length







# Adding information from LSS

$$\frac{\text{Adding information from LSS}}{\sum m_{\nu} < 0.241\,\text{eV}} \qquad \frac{\text{(TT,TE,EE+lowE + lensing)}}{\text{(Planck 2018)}} \qquad \frac{\text{(Planck 2018)}}{\text{(Planck 2018)}}$$

# Adding information from LSS

```
\overline{N_0}_{big}_{imp_{rovement}}_{onN_{eff}}
m_{\nu} < 0.241 \,\text{eV} (TT,TE,EE+lowE +lensing)
                                                                         (Planck 2018)
\sum m_{\nu} < 0.120 \,\text{eV} (TT,TE,EE+lowE +lensing +BaO)
                                                                             SDSS, BOSS, 6dFGS
```

# + adding even more LSS data (but Planck 2015) ...:

Lyman-α (Palanque-Delabrouille et al. 2015)

Full shape matter power spectrum (Vagnozzi et al. 2017)

Weak lensing (KiDs, DES)

Cluster counts (SZ cluster count dataset, Planck)

# Adding information from LSS

$$\frac{\text{Adding information from LSS}}{\sum m_{\nu} < 0.241\,\text{eV}} \qquad \frac{\text{TT,TE,EE+lowE + lensing}}{\text{TT,TE,EE+lowE + lensing}} \qquad \frac{\text{Planck 2018}}{\text{Planck 2018}} \\ \sum m_{\nu} < 0.120\,\text{eV} \qquad \frac{\text{TT,TE,EE+lowE + lensing + BaO}}{\text{SDSS, BOSS, 6dFGS}}$$

# + adding even more LSS data (but Planck 2015) ...:

Lyman-α (Palanque-Delabrouille et al. 2015)

Full shape matter power spectrum (Vagnozzi et al. 2017)

Weak lensing (KiDs, DES)

Cluster counts (SZ cluster count dataset, Planck)



Forecasts promise to reach a sensitivity of  $\sigma(M_v) \approx 0.02 \text{ eV } \& \sigma(N_{eff}) \approx 0.06$ 

# What else can we learn?

### Assumptions about neutrinos made in ACDM

- Neutrinos are free-streaming after 1 MeV (i.e. they are stable and have no interactions)
- Neutrinos follow a relativistic Fermi-Dirac spectrum
- They have a temperature of  $T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma}$
- There are as many neutrinos as anti-neutrinos (negligible lepton asymmetry)

### Non-standard neutrino interactions

IMO et al. 2014, IMO et al. 2017, Barenboim et al. 2019, Cyr-Racine et. al. 2013, Lancaster 2017, Kreisch et al. 2019

$$\mathcal{L}_{\text{int}} = \mathfrak{g}_{ij}\bar{\nu}_i\nu_j\phi + \mathfrak{h}_{ij}\bar{\nu}_i\gamma_5\nu_j\phi$$

Massive scalar 
$$\rightarrow G_{\text{eff}} = \frac{g^2}{m_{\phi}^2}$$

#### Non-standard neutrino interactions

IMO et al. 2014, IMO et al. 2017, Barenboim et al. 2019, Cyr-Racine et. al. 2013, Lancaster 2017, Kreisch et al. 2019

$$\mathcal{L}_{\text{int}} = \mathfrak{g}_{ij}\bar{\nu}_i\nu_j\phi + \mathfrak{h}_{ij}\bar{\nu}_i\gamma_5\nu_j\phi$$

Massive scalar 
$$\rightarrow G_{\text{eff}} = \frac{g^2}{m_{\phi}^2}$$

neutrino self-interactions  $\rightarrow$  delayed decoupling  $\rightarrow$  suppressed free-streaming:



#### Non-standard neutrino interactions

IMO et al. 2014, IMO et al. 2017, Barenboim et al. 2019, Cyr-Racine et. al. 2013, Lancaster 2017, Kreisch et al. 2019

$$\mathcal{L}_{\mathrm{int}} = \mathfrak{g}_{ij}\bar{\nu}_i\nu_j\phi + \mathfrak{h}_{ij}\bar{\nu}_i\gamma_5\nu_j\phi$$
 Massive scalar  $\rightarrow G_{\mathrm{eff}} = \frac{g^2}{m_\phi^2}$ 

neutrino self-interactions  $\rightarrow$  delayed decoupling  $\rightarrow$  suppressed free-streaming:



→ bimodal distribution: **strongly interacting neutrino mode!** 





→ Helps to weaken the Hubble tension

### strongly interacting mode $\rightarrow$ consequences for constraints on $n_s$ , $H_0$





→ Helps to weaken the Hubble tension

► Interesting for inflationary model selection

### strongly interacting mode $\rightarrow$ consequences for constraints on $n_s$ , $H_0$



Including neutrino masses and  $N_{\rm eff}$  makes the strongly interacting mode even more significant (Kreisch et al. 2019)

#### **Other models**

Light mediator (Forastieri 2019, Forastieri 2015)

0.1 eV – 1 MeV range (Escudero & Witte 2019)

Decaying neutrinos (Esudero & Fairbairn 2019, Hannestad & Raffelt 2005)

Sterile neutrino interactions (Forastieri et al. 2017, Archidiacono 2014&2015&2016)

# What else can we learn?

### Assumptions about neutrinos made in ACDM

- Neutrinos are free-streaming after 1 MeV (i.e. they are stable and have no interactions)
- Neutrinos follow a relativistic Fermi-Dirac spectrum
- They have a temperature of  $T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma}$
- There are as many neutrinos as anti-neutrinos (negligible lepton asymmetry)

Impact on cosmological observables?  $\rightarrow$  degenerate with  $N_{\text{eff}}$ 

Impact on cosmological observables? → degenerate with

well known... and well measured

Impact on cosmological observables? → degenerate with



well known... and well measured

Model independent parametrization (expansion in orthonormal polynomials):

$$f_{\nu}(x) = N \cdot \frac{1}{e^x + 1} \bigg( p_0(x) + F_1 p_1(x) + F_2 p_2(x) \bigg)$$
 Normalize such that N<sub>eff</sub>=3.045

(Yes, there can be models for that.)

Impact on cosmological observables? → degenerate with



well known... and well measured

Model independent parametrization (expansion in orthonormal polynomials):

$$f_{\nu}(x) = N \cdot \frac{1}{e^x + 1} \bigg( p_0(x) + F_1 p_1(x) + F_2 p_2(x) \bigg)$$
 Normalize such that N<sub>eff</sub>=3.045

(Yes, there can be models for that.)

### 

Cosmological neutrino mass bound strongly depends on our assumption about the relic neutrino distribution



(here: relaxation about  $\approx 100\%$ )



# What else can we learn?

### Assumptions about neutrinos made in ACDM

- Neutrinos are free-streaming after 1 MeV (i.e. they are stable and have no interactions)
- Neutrinos follow a relativistic Fermi-Dirac spectrum
- They have a temperature of  $T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma}$
- There are as many neutrinos as anti-neutrinos (negligible lepton asymmetry)

Baryon asymmetry 
$$\eta_{\rm b} = \frac{n_{\rm b} - n_{\bar{\rm b}}}{n_{\gamma}} = (6.099 \pm 0.044) \times 10^{-10} \quad \longrightarrow \quad \text{Tiny and very well measured}$$

Standard assumption: lepton asymmetry ≈ baryon asymmetry

Baryon asymmetry 
$$\eta_{\rm b}=\frac{n_{\rm b}-n_{\bar {\rm b}}}{n_{\gamma}}=(6.099\pm0.044)\times10^{-10}$$
 — Tiny and very well measured

Standard assumption: lepton asymmetry ≈ baryon asymmetry

#### **Agnostic point of view: lepton asymmetry = free parameter for cosmology**

Large lepton asymmetry: 
$$\eta_1 \approx \sum_{\alpha=e,\mu,\tau} \eta_{\nu,\alpha} = \frac{1}{12\zeta(3)} \left(\frac{4}{11}\right) \sum_{\alpha=e,\mu,\tau} (\pi^2 \xi_\alpha + \xi_\alpha^3)$$

Baryon asymmetry 
$$\eta_{\rm b}=\frac{n_{\rm b}-n_{\bar {\rm b}}}{n_{\gamma}}=(6.099\pm0.044)\times10^{-10}$$
 — Tiny and very well measured

Standard assumption: lepton asymmetry ≈ baryon asymmetry

#### **Agnostic point of view: lepton asymmetry = free parameter for cosmology**

Large lepton asymmetry: 
$$\eta_1 \approx \sum_{\alpha=e,\mu,\tau} \eta_{\nu,\alpha} = \frac{1}{12\zeta(3)} \left(\frac{4}{11}\right) \sum_{\alpha=e,\mu,\tau} (\pi^2 \xi_\alpha + \xi_\alpha^3)$$

I) Change energy density 
$$\Delta N_{\rm eff} = \frac{15}{7} \sum_{\alpha} \left(\frac{\xi_{\alpha}}{\pi}\right)^2 \left[2 + \left(\frac{\xi_{\alpha}}{\pi}\right)^2\right] \geq 0$$
 Change expansion rate and  $Y_{\rm p}$ 

Baryon asymmetry 
$$\eta_{\rm b}=\frac{n_{\rm b}-n_{\bar {\rm b}}}{n_{\gamma}}=(6.099\pm0.044)\times10^{-10}$$
 Tiny and very well measured

Standard assumption: lepton asymmetry ≈ baryon asymmetry

#### **Agnostic point of view: lepton asymmetry = free parameter for cosmology**

Large lepton asymmetry: 
$$\eta_1 \approx \sum_{\alpha=e,\mu,\tau} \eta_{\nu,\alpha} = \frac{1}{12\zeta(3)} \left(\frac{4}{11}\right) \sum_{\alpha=e,\mu,\tau} (\pi^2 \xi_\alpha + \xi_\alpha^3)$$

I) Change energy density  $\Delta N_{\rm eff} = \frac{15}{7} \sum_{\alpha} \left(\frac{\xi_{\alpha}}{\pi}\right)^2 \left[2 + \left(\frac{\xi_{\alpha}}{\pi}\right)^2\right] \geq 0$  Change expansion rate and  $Y_{\rm p}$ 



#### CMB analysis (IMO & Schwarz 2017)

$$\xi = -0.002^{+0.053}_{-0.060} (68\% \text{ CL}) \Rightarrow -0.046 \le \eta_1 \le 0.038$$

→ Could still be orders of magtnitude larger than baryon asymmetry

Baryon asymmetry 
$$\eta_{\rm b}=\frac{n_{\rm b}-n_{\bar {\rm b}}}{n_{\gamma}}=(6.099\pm0.044)\times10^{-10}$$
 — Tiny and very well measured

Standard assumption: lepton asymmetry ≈ baryon asymmetry

#### **Agnostic point of view: lepton asymmetry = free parameter for cosmology**

Large lepton asymmetry: 
$$\eta_1 \approx \sum_{\alpha=e,\mu,\tau} \eta_{\nu,\alpha} = \frac{1}{12\zeta(3)} \left(\frac{4}{11}\right) \sum_{\alpha=e,\mu,\tau} (\pi^2 \xi_\alpha + \xi_\alpha^3)$$

I) Change energy density  $\Delta N_{\rm eff} = \frac{15}{7} \sum_{\alpha} \left(\frac{\xi_{\alpha}}{\pi}\right)^2 \left[2 + \left(\frac{\xi_{\alpha}}{\pi}\right)^2\right] \geq 0$  Change expansion rate and  $Y_{\rm p}$ 



#### CMB analysis (IMO & Schwarz 2017)

$$\xi = -0.002^{+0.053}_{-0.060} (68\% \text{ CL}) \Rightarrow -0.046 \le \eta_1 \le 0.038$$

→ Could still be orders of magnitude larger than baryon asymmetry

### **BBN analysis** (Pitrou et al 2018)

PRIMAT (Pitrou et al. 2018)  $\xi = 0.001^{+0.016}_{-0.016} (68\% \text{ CL})$ 

ParthENoPE (Consiglio et al. 2017)  $\xi = 0.021^{+0.016}_{-0.016}~(68\%~{
m CL})$ 

→ theoretical uncertainties in deuterium prediction...

Cosmological data provide insights into neutrino properties at energies of  $\approx 10^{-5} \text{ eV} - 0.1 \text{ MeV}.$ 

They are a powerful tool in order to constrain  $N_{\rm eff}$  and  $m_{\rm v}$ . But this is not the end of the story, they can also be used to learn about non-standard scenarios.

New data are coming in the next years, so stay tuned.

Cosmological data provide insights into neutrino properties at energies of  $\approx 10^{-5} \text{ eV} - 0.1 \text{ MeV}.$ 

They are a powerful tool in order to constrain  $N_{\rm eff}$  and  $m_{\rm v}$ . But this is not the end of the story, they can also be used to learn about non-standard scenarios.

New data are coming in the next years, so stay tuned.

