Neutrino Platform Week 2019: Hot Topics in Neutrino Physics

Supernova Neutrinos:

Current Challenges

FRANCESCO CAPOZZI Max Planck Institute For Physics

What are supernovae?

When nuclear fuel ends, massive stars (> 8 M_{\odot}) start collapsing

The density in the core rapidly increases

What are supernovae?

The density reaches nuclear saturation $\rho \sim 10^{14}$ g/cm³

A shock wave is produced blowing up the star (Supernova)

What is the role of neutrinos?

 v / \overline{v} of all flavor carry away 99% of E_g in ~10s seconds

Neutrinos are messengers from the interior of the exploding star

What is the role of neutrinos?

The shock wave stalls after ~ few 10 ms

$$v_e + n -> e^- + p$$

$\bar{v}_e + p -> e^+ + n$

Neutrinos might revive the shock through energy deposition

What is the role of neutrinos?

Chakraborty, Bhattacharjee, Kar, Phys. Rev. D 89 (2014) no.1, 013011, T. Fischer et al, Astron. Astrophys. 517, A80 (2010)

What have we learnt so far? Supernova 1987a

First and only neutrinos observed from a supernova

What have we learnt so far?

The supernova neutrinos chain

The supernova neutrinos chain

Each aspect of the chain to MUST be well understood

Each aspect of the chain to MUST be well understood

We review the status of each step in the chain

Successful explosions for low mass progenitors (< 10 M_{\odot})

Faster explosions in multi-D compared to 1D

Multi-D simulations allows convective / turbulent instabilities

Convective instabilities favor neutrino heating and explosions

Less consistent picture for heavy progenitor masses

Example: s-quark contribution in v-n NC creates explosion

Less consistent picture for heavy progenitor masses

Example: fast rotation induced explosion

Less consistent picture for heavy progenitor masses

Hypothesis 1

The delayed neutrino mechanism is **NOT** robust

Less consistent picture for heavy progenitor masses

Hypothesis 1

The delayed neutrino mechanism is **NOT** robust

Hypothesis 2

The delayed neutrino mechanism **IS** robust. Simulations are missing some key ingredients

More refined simulations will give the answer

Multi-D neutrino signal features

Sloshing/spiraling (SASI) motion of the shock modulates L_{ν}

Neutrinos are probe of the explosion mechanism

Multi-D neutrino signal features

Lepton number is emitted asymmetrically (LESA)

Glas *et al.,* Astrophys.J. 881 (2019) no.1, 36

confirmed by

O'Connor and Couch, Astrophys. J. 865 (2018) no.2, 81

Vartanyan, Burrows and Radice, MNRAS 489 (2019) 2, 2227

Neutrinos are probe of the explosion mechanism

Are we forgetting something?

No 2D / 3D simulations include Flavor Conversions

$\star v_e + n -> e^- + p$

 \blacktriangleright $\overline{v}_e + p \longrightarrow e^+ + n$

Neutrino heating is flavor dependent!!!

Each aspect of the chain to MUST be well understood

We review the status of each step in the chain

Flavor conversions: overview

Flavor conversions: overview

MSW resonance

Well known MSW resonances happening in the outer layers

Dighe, Smirnov, 2000, Schirato, Fuller, 2002, Fogli, Lisi, Mirizzi, Montanino, 2002, ...

MSW resonance

When does it happen?

Chakraborty, Bhattacharjee, Kar, Phys. Rev. D 89 (2014) no.1, 013011

T. Fischer et al, Astron. Astrophys. 517, A80 (2010)

Francesco Capozzi - Max Planck Institute For Physics

vv interactions are relevant: spectral splits?

Hannestad, Raffelt, Sigl, Wong, 2006, Duan, Fuller, Carlson, Qian, 2006, many others, ...

Instability under tiny space inhomogeneities: decoherence?

Raffelt, Sarikas, Seixas 2013, Mangano, Mirizzi, Saviano 2014-2015, Duan, Shalgar 2014, ...

Time instabilities avoid matter suppression?

Dasgupta, Mirizzi 2015, Duan, Abbar, 2015, Capozzi, Dasgupta, Mirizzi 2016, ...

When does it happen?

Chakraborty, Bhattacharjee, Kar, Phys. Rev. D 89 (2014) no.1, 013011

T. Fischer et al, Astron. Astrophys. 517, A80 (2010)

Francesco Capozzi - Max Planck Institute For Physics

Mixing independent, driven by vv potential: fast decoherence?

Sawyer 2005, 2009, 2015, Chakraborty, Hansen, Izaguirre, Raffelt 2016, Dasgupta, Mirizzi, Sen 2017, ...

When does it happen?

Chakraborty, Bhattacharjee, Kar, Phys. Rev. D 89 (2014) no.1, 013011

T. Fischer et al, Astron. Astrophys. 517, A80 (2010)

Francesco Capozzi - Max Planck Institute For Physics

Main requirement for FAST conversions: angular crossing

Izaguirre, Raffelt, Tamborra 2016, <u>Capozzi</u>, Dasgupta, Lisi, Marrone, Mirizzi 2017, Abbar, Duan 2017, <u>Capozzi</u>, Dasgupta, Mirizzi, Sen, Sigl 2018, Shalgar, Tamborra 2018, ...

Are supernovae simulations showing any sign of crossing?

More work needed for a conclusive assessment

Assuming they occur, what is their impact on the explosion?

Very challenging numerically. Effective approach? see Richers, McLaughlin, Kneller, Vlasenko 2019

Each aspect of the chain to MUST be well understood

We review the status of each step in the chain

Water Cherenkov

SuperK (32 kton): main channel IBD

Very precise measurement of \overline{v}_e , both time and energy

Water Cherenkov

SuperK + Gd (2021): 90% tagging of $\overline{\nu}_e$

ve becomes accessible (~100 events)

Water Cherenkov

IceCube sees excess of DOM hits over noise (mostly \overline{v}_e)

Most precise for studying temporal evolution (SASI,...)

Liquid scintillator

Low threshold allows sensitivity for v-proton elastic scattering

Unique probe for v_x

Liquid Argon

Dominant channel: $v_e + {}^{40}Ar \longrightarrow e^- + {}^{40}K^*$

Best precision on v_e (need improvements on cross section)

K. Nakamura, S. Horiuchi, M. Tanaka, K. Hayama, T. Takiwaki and K. Kotake, Mon. Not. Roy. Astron. Soc. 461 (2016) no.3, 3296

Neutrinos produce an alert for other observatories

Neutrino pointing help light collection in telescopes

Beacom, Vogel, Phys. Rev. D 60 (1999) 033007

$\delta\theta \sim$ few degrees for SuperK

Neutrinos and GW carry important information from the PNS

Westernacher-Schneider, O'Connor, O'Sullivan, Tamborra, Wu, Couch and Malmenbeck, arXiv:1907.01138

Oscillation modes (asteroseismology) can be probed

Conclusions

- A lot of progress made so far, but still plenty of work ahead

Conclusions

- A lot of progress made so far, but still plenty of work ahead

- Everything is equally important: explosion, flavor, detection

Conclusions

- A lot of progress made so far, but still plenty of work ahead

Everything is equally important: explosion, flavor, detection

- \mathbf{v} + GW + γ are the key for a full understanding

