Current status of 3+1 neutrino mixing Christoph Andreas Ternes IFIC, Universitat de València - CSIC

Neutrino Platform Week 2019: Hot Topics in Neutrino Physics CERN, Switzerland, October 7th 2019

Neutrino mixing matrix

$$
U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}
$$

Three mixing angles $\theta_{12}, \theta_{13}, \theta_{23}$ 1 Dirac + 2 Majorana CP-phases Three masses m_1, m_2, m_3

Oscillations are only sensitive to mass splittings, for which two possible orderings are possible

PLB 782 (2018), de Salas, Forero, Ternes, Tórtola, Valle

Results of global combination:

PLB 782 (2018), de Salas, Forero, Ternes, Tórtola, Valle

See also: -Bari-group, PPNP 102 (2018) -Nu-fit, JHEP 1901 (2019)

Anomalies in oscillations

Anomalies in oscillations

3.8σ excess in **LSND**

~3σ deficit in **Gallium**

~3σ deficit in **reactors**

Anomalies in oscillations

ones obtained by other experiments

Beyond three-neutrino oscillations

Beyond three-neutrino oscillations

We can add a forth neutrino

This neutrino must be sterile, which means it is a singlet under all standard model gauge groups

A forth active neutrino is excluded by observations of invisible Z-decays

$$
e^+e^- \to Z \to \sum_{j=e,\mu,\tau} \nu_j
$$

 σ_{had} [nb] $2v$ $3v$ **ALEPH** 30 **DELPHI** $4v$ $L3$ **OPAL** 20 average measurements error bars increased by factor 10 10 $\mathbf 0$ 88 90 92 86 94 E_{cm} $[GeV]$

Phys. Rept. 427 (2006), LEP

We extend the mixing matrix

$$
\begin{pmatrix}\nU_{e1} & U_{e2} & U_{e3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}\n\end{pmatrix}\n\Rightarrow\n\begin{pmatrix}\nU_{e1} & U_{e2} & U_{e3} & U_{e4} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\
U_{s1} & U_{s2} & U_{s3} & U_{s4}\n\end{pmatrix}
$$

We extend the mixing matrix

$$
\begin{pmatrix}\nU_{e1} & U_{e2} & U_{e3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}\n\end{pmatrix}\n\Rightarrow\n\begin{pmatrix}\nU_{e1} & U_{e2} & U_{e3} & U_{e4} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\
U_{s1} & U_{s2} & U_{s3} & U_{s4}\n\end{pmatrix}
$$
\n
$$
\begin{array}{c}\n\text{DSappearance} \\
\text{PSB-L} \approx 1 - \sin^2(2\theta_{\alpha\alpha})\sin^2\left(\frac{\Delta m_{41}^2 L}{4E}\right) \\
\sin^2(2\theta_{\alpha\alpha}) = 4|U_{\alpha 4}|^2(1 - |U_{\alpha 4}|^2)\n\end{array}
$$

 \mathbf{T}

We extend the mixing matrix

$$
\begin{pmatrix}\nU_{e1} & U_{e2} & U_{e3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}\n\end{pmatrix}\n\Rightarrow\n\begin{pmatrix}\nU_{e1} & U_{e2} & U_{e3} & U_{e4} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\
U_{s1} & U_{s2} & U_{s3} & U_{s4}\n\end{pmatrix}
$$
\n
$$
P_{\alpha\alpha}^{\text{SBL}} \approx 1 - \sin^2(2\theta_{\alpha\alpha})\sin^2\left(\frac{\Delta m_{41}^2 L}{4E}\right)
$$
\n
$$
\sin^2(2\theta_{\alpha\alpha}) = 4|U_{\alpha4}|^2(1 - |U_{\alpha4}|^2)
$$
\n
$$
\nu_e \rightarrow \nu_e : |U_{e4}|^2 = \sin^2\theta_{14}
$$
\n
$$
\textcircled{Reactors and Gallium}
$$

 \mathbf{T}

We extend the mixing matrix

$$
\begin{pmatrix}\nU_{e1} & U_{e2} & U_{e3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}\n\end{pmatrix}\n\Rightarrow\n\begin{pmatrix}\nU_{e1} & U_{e2} & U_{e3} & U_{e4} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\
U_{s1} & U_{s2} & U_{s3} & U_{s4}\n\end{pmatrix}
$$
\n
$$
D|Sappearance
$$
\n
$$
P_{\alpha\alpha}^{SBL} \approx 1 - \sin^2(2\theta_{\alpha\alpha})\sin^2\left(\frac{\Delta m_{41}^2 L}{4E}\right)
$$
\n
$$
\sin^2(2\theta_{\alpha\alpha}) = 4|U_{\alpha 4}|^2(1 - |U_{\alpha 4}|^2)
$$
\n
$$
\begin{aligned}\nV_e \rightarrow V_e : |U_{e4}|^2 = \sin^2 \theta_{14} \\
&\textcircled{R} \text{reactors and Gallium} \\
V_{\mu} \rightarrow V_{\mu} : |U_{\mu 4}|^2 = \sin^2 \theta_{24} \cos^2 \theta_{14} \\
&\textcircled{atmospheres and accelerators}\n\end{aligned}
$$

 \mathbf{T}

We extend the mixing matrix

$$
\begin{pmatrix}\nU_{e1} & U_{e2} & U_{e3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}\n\end{pmatrix} \Rightarrow\n\begin{pmatrix}\nU_{e1} & U_{e2} & U_{e3} & U_{e4} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\
U_{s1} & U_{s2} & U_{s3} & U_{s4}\n\end{pmatrix}
$$
\n
$$
\begin{array}{c}\n\text{APPearance} \\
\text{APPearance} \\
\text{PSBL} \approx \sin^2(2\theta_{\alpha\beta})\sin^2\left(\frac{\Delta m_{41}^2 L}{4E}\right) \\
\text{sin}^2(2\theta_{\alpha\beta}) = 4|U_{\alpha 4}|^2|U_{\beta 4}|^2\n\end{array}\n\begin{array}{c}\nP_{\alpha\alpha}^{\text{SBL}} \approx 1 - \sin^2(2\theta_{\alpha\alpha})\sin^2\left(\frac{\Delta m_{41}^2 L}{4E}\right) \\
\text{sin}^2(2\theta_{\alpha\beta}) = 4|U_{\alpha 4}|^2|U_{\beta 4}|^2\n\end{array}\n\begin{array}{c}\nP_{\alpha\alpha}^{\text{SBL}} \approx 1 - \sin^2(2\theta_{\alpha\alpha})\sin^2\left(\frac{\Delta m_{41}^2 L}{4E}\right) \\
\text{sin}^2(2\theta_{\alpha\beta}) = 4|U_{\alpha 4}|^2(1 - |U_{\alpha 4}|^2)\n\end{array}
$$

 $\nu_{\mu} \rightarrow \nu_{\mu} : |U_{\mu 4}|^2 = \sin^2 \theta_{24} \cos^2 \theta_{14}$ @**atmospherics** and **accelerators**

@**Reactors** and **Gallium**

We extend the mixing matrix

Opera

$$
\begin{pmatrix}\nU_{e1} & U_{e2} & U_{e3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}\n\end{pmatrix}\n\Rightarrow\n\begin{pmatrix}\nU_{e1} & U_{e2} & U_{e3} & U_{e4} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\
U_{s1} & U_{s2} & U_{s3} & U_{s4}\n\end{pmatrix}
$$
\n
$$
\begin{array}{c}\n\text{APPearance} \\
\text{P}_{\alpha\beta}^{\text{SBL}} \approx \sin^2(2\theta_{\alpha\beta})\sin^2\left(\frac{\Delta m_{41}^2 L}{4E}\right) & P_{\alpha\alpha}^{\text{SBL}} \approx 1 - \sin^2(2\theta_{\alpha\alpha})\sin^2\left(\frac{\Delta m_{41}^2 L}{4E}\right) \\
\sin^2(2\theta_{\alpha\beta}) = 4|U_{\alpha 4}|^2|U_{\beta 4}|^2 & \sin^2(2\theta_{\alpha\alpha}) = 4|U_{\alpha 4}|^2(1 - |U_{\alpha 4}|^2) \\
\nu_{\mu} \rightarrow \nu_{e} : \sin^2(2\theta_{\mu e}) = 4|U_{e 4}|^2|U_{\mu 4}|^2 & \nu_{e} \rightarrow \nu_{e} : |U_{e 4}|^2 = \sin^2\theta_{14} \\
\textcircled{Reactors and Gallium} \\
\end{array}
$$
\n
$$
\begin{array}{c}\n\text{QLSND, Karmen, MiniBoone,} \\
\end{array}
$$

 $\nu_{\mu} \rightarrow \nu_{\mu} : |U_{\mu 4}|^2 = \sin^2 \theta_{24} \cos^2 \theta_{14}$ @**atmospherics** and **accelerators**

 \mathbf{L}

 \mathbf{u} .

We extend the mixing matrix

$$
\begin{pmatrix}\nU_{e1} & U_{e2} & U_{e3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}\n\end{pmatrix}\n\Rightarrow\n\begin{pmatrix}\nU_{e1} & U_{e2} & U_{e3} & U_{e4} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\n\text{APPearance} \\
\text{P}_{\alpha\beta}^{\text{SBL}} \approx \sin^2(2\theta_{\alpha\beta})\sin^2\left(\frac{\Delta m_{41}^2 L}{4E}\right) & P_{\alpha\alpha}^{\text{SBL}} \approx 1 - \sin^2(2\theta_{\alpha\alpha})\sin^2\left(\frac{\Delta m_{41}^2 L}{4E}\right) \\
\sin^2(2\theta_{\alpha\beta}) = 4|U_{\alpha 4}|^2|U_{\beta 4}|^2 & \sin^2(2\theta_{\alpha\alpha}) = 4|U_{\alpha 4}|^2(1 - |U_{\alpha 4}|^2) \\
\nu_{\mu} \rightarrow \nu_{e} : \sin^2(2\theta_{\mu e}) = 4|U_{e4}|^2|U_{\mu 4}|^2 & \nu_{e} \rightarrow \nu_{e} : |U_{e4}|^2 = \sin^2\theta_{14} \\
\text{QLSND, Karmen, Miniscone, \nQudratically suppressed \n
$$
\n
$$
\begin{aligned}\n\text{Q} & \mu_{\mu} \rightarrow \nu_{\mu} : |U_{\mu 4}|^2 = \sin^2\theta_{24}\cos^2\theta_{14} \\
\text{Q} & \text{atmospheres and accelerators}\n\end{aligned}
$$

Gallium anomaly, RAA, and LSND can be explained with new a mass splitting and new mixing anlges

$$
\Delta m_{41}^2, \sin^2\theta_{ee}, \sin^2\theta_{\mu e}
$$

How well does this explanation hold today? New experiments have been constructed in all sectors

ν e appearance experiments

MiniBooNE

MiniBooNE was built to check the **LSND** results with a different baseline, but similar L/E

MiniBooNE has no near detector

PRL 121 (2018)

MiniBooNE

MiniBooNE was built to check the **LSND** results with a different baseline, but similar L/E

MiniBooNE has no near detector

MiniBooNE sees an excess at ~5σ at low energies

However, not exactly where it should…

Fit of ν e appearance data

The best fit value of **MiniBooNE** is excluded by **Icarus** and **Opera**

LSND and **MiniBooNE** only partially agree

Gariazzo, Giunti, Ternes, in preparation

ν e disappearance experiments

Revisiting old results

Daya Bay and Reno prefer a suppression of 235U flux over oscillations

Giunti, Li, Littlejohn, Surukuchi PRD 99 (2019)

Re-evaluation of Ga cross sections reduces the statistical significance of the Gallium anomaly to ~2σ

Kostensalo, Suhonen, Giunti, Srivastava PLB795 (2019)

Reactor fluxes

Huber-Mueller-fluxes do not predict the "bump"

The "bump" cannot be explained by sterile neutrino oscillations, because they should be washed out at these distances

We need a model-independent procedure, taking only ratios of fluxes at different distances into account

Double Chooz, JHEP 1410 (2014) Daya Bay, PRL 116 (2016) no.6 RENO, PRL 116 (2016) no.21

NEOS

Single detector, taking ratio to **Daya Bay**

PRL 118 (2017)

DANSS

Single movable detector, ~3σ preference for 3+1 **in 2018**

Fit of v_e **disappearance data**

DANSS / **NEOS**

PLB782 (2018), Gariazzo, Giunti, Laveder, Li

Perfect agreement at $\Delta m_{41}^2 = 1.3 \text{ eV}^2$ $\sin^2(2\theta_{ee}) = 0.05$ $\sin^2 \theta_{14} = 0.01$

See also: Dentler, Hernández-Cabezudo, Kopp, Maltoni, Schwetz, JHEP 1711 (2017)

Fit of ν e disappearance data

DANSS / **NEOS** + **Gallium** + **RAA**

Small tension between **NEOS/DANSS** and **Gallium** and **RAA**

Fit of ν e disappearance data

All data:

But….

Fit of ν e disappearance data

Less agreement between **Neos** and **DANSS** Indications in favor of SBL oscillations fading away?

ν μ disappearance experiments

IceCube and DeepCore

High-energy regime 0.3 TeV – 20 TeV Waiting for 7 yr update!

Low-energy regime 6 GeV – 56 GeV

Also constraining θ_{34}

PRL 117 (2016) 071801 PRD 95 (2017) 112002

MINOS/MINOS+

Two analyses: far-over-near ratio, and two-detector fit For large mass splittings: systematic dominated

PRL 117 (2016) 151803 PRL 122 (2019) 091803

MINOS/MINOS+

For mass splittings below 20 eV² the bound gets stronger after updating the analysis

The effect of the other oscillation parameters is very small in this region

MINOS/MINOS+

Far over near ratio; PRL 117 (2016) 151803 Two detector fit: PRL 122 (2019) 091803 Results barely change in the important region

Fit of ν μ disappearance data

All data:

Reminder

$$
\begin{pmatrix}\nU_{e1} & U_{e2} & U_{e3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}\n\end{pmatrix}\n\Rightarrow\n\begin{pmatrix}\nU_{e1} & U_{e2} & U_{e3} & U_{e4} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\
U_{s1} & U_{s2} & U_{s3} & U_{s4}\n\end{pmatrix}
$$

$$
\nu_{\mu} \to \nu_e : \sin^2(2\theta_{\mu e}) = 4|U_{e4}|^2|U_{\mu 4}|^2
$$

APPearance DISappearance

$$
\nu_e \to \nu_e : |U_{e4}|^2 = \sin^2 \theta_{14}
$$

$$
\nu_\mu \to \nu_\mu : |U_{\mu 4}|^2 = \sin^2 \theta_{24} \cos^2 \theta_{14}
$$

 \mathbf{L}

Reminder

Data October 2019 (without new DANSS)

Data October 2019 (without new DANSS)

No overlap anymore!

We obtain: $GoF_{PG} = 5 \times 10^{-10}$

Global 3+1 fit is unaccaptable!

This happens because of the lower bounds on θ_{ue} obtained by LSND and MiniBooNE

Data October 2019 (without new DANSS)

Excluding LSND gives $GoF_{PG} = 2 \times 10^{-5}$

Problem remains!

Data October 2019 (without new DANSS)

Excluding MB gives $GoF_{PG} = 6 \times 10^{-7}$

Problem remains!

Only excluding LSND and MB solves the problem

No surprise, because now there is no lower bound

The RAA might be explained with updated reactor fluxes

The RAA might be explained with updated reactor fluxes The significance of the Gallium anomaly is reduced

The RAA might be explained with updated reactor fluxes The significance of the Gallium anomaly is reduced The indication of SBL oscillations seen last year might be fading away due to new DANSS results

The RAA might be explained with updated reactor fluxes

- The significance of the Gallium anomaly is reduced
- The indication of SBL oscillations seen last year might be fading away due to new DANSS results
- The tension between APP and DIS data makes a global 3+1 fit unacceptable

The RAA might be explained with updated reactor fluxes

- The significance of the Gallium anomaly is reduced
- The indication of SBL oscillations seen last year might be fading away due to new DANSS results
- The tension between APP and DIS data makes a global 3+1 fit unacceptable
- The current status: **It is pretty bad!**

Current regions are completely incompatible with cosmological observations!

Gariazzo, de Salas, Pastor, JCAP 1907 (2019)