Precision (Anti)Neutrino Scattering off Nucleons and Nuclei

R. Petti

University of South Carolina, USA

Neutrino Platform Week 2019: Hot Topics in Neutrino Physics CERN, Geneva, Switzerland, October 8, 2019

I Introduction

- + Electron and ν probes
- + Status of ν scattering experiments
- **II** Requirements for Precision Physics
 - Statistics vs. resolution
 - Control of the targets
 - ✦ Control of the fluxes

III Precision Measurements

- Electroweak measurements
- ✦ Adler sum rule
- ✤ Isospin physics
- Nuclear modifications of nucleon properties

IV Summary

<u>PRECISION PHYSICS: e^{\pm} PROBE</u>

 Reference EW studies in e⁺e⁻ at LEP by enhancing weak σ at the Z⁰ mass pole:

	Number of Z^0	Number of W			
LEP	18×10^6	80×10^3			

 \implies High-statistics electroweak measurements at LEP/SLC reached a precision $< 10^{-3}$.

- ◆ Reference QCD studies in ep at HERA with measurements ~ 10⁻² of the nucleon structure complementary to fixed target from JLab, COMPASS, SLAC, NMC, BCDMS etc.
 - \implies Can a modern $\nu(\bar{\nu})$ facility deliver comparable precisions adding insights complementary to planned fixed-target & collider programs?

PRECISION PHYSICS: $\nu/\bar{\nu}$ PROBE

Neutrinos offer an ideal probe for EW physics and partonic/hadronic structure of matter:

- Clean probe since only weak interaction, full polarization;
- Complete flavor separation in Charged Current interactions (d/u, s/\bar{s} , \bar{d}/\bar{u})
- Separation of valence (xF_3) and sea (F_2) distributions, complementary to e^{\pm} .

⇒ Potential so far only partially explored due to 3 (main) limitations

STATISTICS

Tiny cross-sections with limited beam intensities required massive & coarse detectors.

► TARGETS

Need of massive nuclear targets did not allow a precise control of the interactions.

♦ FLUXES

Incoming (anti)neutrino energy unknown implied substantial flux uncertainties.

STATISTICS vs. RESOLUTION

 Existing detectors compromise between high (low) statistics and coarse (high) resolution: affected by systematics on E_μ, E_H scales, nuclear targets & flux

Experiment	Mass	$ u_{\mu}$ CC Stat.	Target	$E_{ u}$ (GeV)	ΔE_{μ}	$\Delta E_{\rm H}$
CDHS	750 t	10^{7}	p,Fe	20-200	2.0%	2.5%
BEBC	various	5.7×10^4	p,D,Ne	10-200		
CCFR	690 t	$1.0 imes 10^6$	Fe	30-360	1.0%	1.0%
NuTeV	690 t	1.3×10^{6}	Fe	30-360	0.7%	0.43%
CHORUS	100 t	3.6×10^{6}	Emul.,Pb	10-200	2.5%	5.0%
NOMAD	2.7 t	$1.5 { imes} 10^{6}$	C,Fe	5-200	0.2%	0.5%
MINOS ND	980 t	$3.6 imes 10^{6}$	Fe	3-50	2-4%	5.6%
T2K ND	1.9 t	10^{5}	CH, H_2O	0.2-5	0.6%	2-4%
MINER ν A	5.4 t	10^{7}	CH, C, Fe, Pb	1-30	2%	

 \implies Significant progress requires about 10^8 CC AND high resolution $\Delta E_{\mu} \leq 0.2\%$

Precision EW and QCD studies prefer high energy (anti)neutrinos

⇒ Modern beam facilities optimized at lower energies for detection of oscillations

- Available LBNF Long-Baseline Neutrino Facility beam optimized for FD ν_τ appearance: Conceivable dedicated run after 5y FHC + 5y RHC with the "standard" beams optimized for CP
 - LBNF: 120 GeV p, 1.2 MW, 1.1×10²¹ pot/y, ND at 574m;
 - LBNF upgrade: 120 GeV p, 2.4 MW (x 2), $\sim 3 \times 10^{21}$ pot/y.
- + Assume a modest 2y FHC run with ν_{τ} optimized beam & LBNF upgrade
- \implies Can afford a high resolution ND of a few tons and still collect desired statistics $\sim 10^8$

CONTROL OF TARGETS

• Precision EW & QCD measurements require control of ν -target(s) as in e^{\pm} DIS:

- Massive ν detectors intrinsically limited by the knowledge of the target composition & materials;
- Possible accurate control of target(s) by separating target(s) from active detector(s);
- Thin targets spread out uniformly within tracker by keeping low density $0.005 \le \rho \le 0.18 \text{ g/cm}^3$

 \implies Straw Tube Tracker (STT) in $B \sim 0.6 T$ with 4π electromagnetic calorimeter

- Targets (100% purity) account for ~ 97% of STT mass (straws 3%) and can be tuned to achieve desired statistics & resolutions.
- Separation from excellent vertex, angular & timing resolutions.
- Thin targets can be replaced during data taking: C, Ca, Ar, Fe, Pb, etc.

♦ Need to understand nuclear modifications & corresponding systematic uncertainties:

- Use of heavy target material(s) unavoidable to achieve desired statistics;
- Complexity of weak current (vs. EM) + substantial nuclear modifications (primary & FSI);
- Cannot rely only on model corrections for precision EW & QCD studies.

⇒ Necessary condition availability of (complementary) free nucleon target: hydrogen

NuTeV Coll., PRD 74 (2006) 012008

N. Kalantarians, C. Keppel, M.E. Cristy, PRC 96 (2017) 032201

• Novel technique to get $\nu(\bar{\nu})$ -Hydrogen by subtracting CH₂ and C targets (solid H):

- Exploit high resolutions & control of chemical composition and mass of targets in STT;
- Model-independent data subtraction of dedicated C (graphite) target from main CH₂ target;
- Kinematic selection provides large H samples of inclusive & exclusive CC topologies with 80-95% purity and >90% efficiency before subtraction.
- \implies Viable and realistic alternative to liquid H_2 detectors

H. Duyang, B. Guo, S.R. Mishra, RP, arXiv:1809.08752 [hep-ph]

CONTROL OF FLUXES

• Relative ν_{μ} flux vs. E_{ν} from exclusive $\nu_{\mu}p \rightarrow \mu^{-}p\pi^{+}$ on Hydrogen:

- Select well reconstructed $\mu^- p \pi^+$ topology on H ($\delta p/p \sim 3.5\%$);
- Cut $|\nu < 0.5(0.75)$ GeV flattens cross-sections reducing uncertainties on E_{ν} dependence;
- Systematic uncertainties dominated by muon energy scale ($\Delta E_{\mu} \sim 0.2\%$ in STT from K₀ mass).

⇒ Dramatic reduction of systematics vs. techniques using nuclear targets

H. Duyang, B. Guo, S.R. Mishra, RP, PLB 795 (2019) 424, arXiv:1902.09480 [hep-ph]

Roberto Petti

USC

• Relative $\bar{\nu}_{\mu}$ flux vs. E_{ν} from exclusive $\bar{\nu}_{\mu}p \rightarrow \mu^{+}n$ QE on Hydrogen:

- E_{ν} from QE kinematics on H and reconstructed direction of interacting neutrons (~80%);
- Cut $\nu < 0.1(0.25)$ GeV flattens cross-sections reducing uncertainties on E_{ν} dependence;
- Systematics and total uncertainties comparable to relative ν_{μ} flux from $\nu_{\mu}p \rightarrow \mu^{-}p\pi^{+}$ on H.

H. Duyang, B. Guo, S.R. Mishra, RP, PLB 795 (2019) 424, arXiv:1902.09480 [hep-ph]

GENERAL PURPOSE PHYSICS FACILITY

- Possible to address the main limitations of neutrino experiments (statistics, control of targets & fluxes) largely filling the precision gap with electron experiments.
 - ⇒ Exploit the unique properties of the (anti)neutrino probe to study fundamental interactions & structure of nucleons and nuclei
- ◆ Turn the LBNF ND site into a general purpose v&v physics facility with broad program complementary to ongoing fixed-target, collider and nuclear physics efforts:
 - Measurement of $\sin^2 \theta_W$ and electroweak physics;
 - Precision tests of isospin physics & sum rules (Adler, GLS);
 - Measurements of strangeness content of the nucleon $(s(x), \bar{s}(x), \Delta s, \text{ etc.})$;
 - Studies of QCD and structure of nucleons and nuclei;
 - Precision tests of the structure of the weak current: PCAC, CVC;
 - Measurement of nuclear physics and (anti)-neutrino-nucleus interactions; etc.
 - Precision measurements as probes of New Physics (BSM);
 - Searches for New Physics (BSM)
 - \implies Discovery potential & hundreds of diverse physics topics
- ✦ Same control of targets & fluxes reduces systematics for long-baseline oscillations.

ELECTROWEAK MEASUREMENTS

• Sensitivity expected from ν scattering at LBNF comparable to the Collider precision:

- <u>Different scale</u> of momentum transfer with respect to LEP/SLD (off Z^0 pole);
- Direct measurement of neutrino couplings to Z^0 \implies Only other measurement LEP $\Gamma_{\nu\nu}$
- Single experiment to directly check the running of $\sin^2 \theta_W$;
- Independent cross-check of the NuTeV $\sin^2 \theta_W$ anomaly (~ 3σ in ν data) in a similar Q^2 range.

- ◆ Different independent channels:
 R^ν = σ^ν_{NC}/σ^ν_{CC} in ν-N DIS (~0.35%)
 R_{νe} = σ^p_{NC}/σ^ν_{NC} in ν-e⁻ NC elastic (~1%)
 NC/CC ratio (νp → νp)/(νn → μ⁻p) in (quasi)-elastic interactions
 NC/CC ratio ρ⁰/ρ⁺ in coherent processes
 ⇒ Combined EW fits like LEP
- Further reduction of uncertainties depending upon beam exposure

ADLER SUM RULE & ISOSPIN PHYSICS

The Adler integral provides the ISOSPIN of the target and is derived from current algebra:

 $S_A(Q^2) = \int_0^1 \frac{dx}{2x} \left(F_2^{\bar{\nu}p} - F_2^{\nu p} \right) = I_p$

- At large Q^2 (quarks) sensitive to $(s \bar{s})$ asymmetry, isospin violations, heavy quark production
- Apply to nuclear targets and test nuclear effects (S. Kulagin and R.P. PRD 76 (2007) 094023)

 \implies Precision test of S_A at different Q^2 values

- Only measurement available from BEBC based on 5,000
 vp and 9,000 vp (D. Allasia et al., ZPC 28 (1985) 321)
- ◆ Direct measurement of F^{νn}_{2,3}/F^{νp}_{2,3} free from nuclear uncertainties and comparisons with e/µ DIS
 ⇒ d/u at large x and verify limit for x → 1

Process	$ u(ar{ u}) ext{-}H$			
Standard CF	optimized:			
$ u_{\mu}$ CC (5 y)	3.4×10 ⁶			
$ar{ u}_{\mu}$ CC (5 y)	2.5×10 ⁶			
Optimized $ u_{ au}$	appearance:			
$ u_{\mu}$ CC (2 y)	$6.5 imes 10^{6}$			
$ u_{\mu}$ CC (2 y)	4.3×10^{6}			

NUCLEAR MODIFICATIONS OF NUCLEON PROPERTIES

• Availability of ν -H & $\overline{\nu}$ -H allows direct measurement of nuclear modifications of $F_{2,3}$:

$$R_A \stackrel{\text{def}}{\equiv} \frac{2F_{2,3}^{\nu A}}{F_{2,3}^{\nu p} + F_{2,3}^{\nu p}}(x, Q^2) = \frac{F_{2,3}^{\nu A}}{F_{2,3}^{\nu N}}$$

- Comparison with e/μ DIS results and nuclear models;
- Study flavor dependence of nuclear modifications using $\nu \& \bar{\nu} (W^{\pm}/Z \text{ helicity, C-parity, Isospin});$
- Effect of the axial-vector current.
- \bullet Study nuclear modifications to parton distributions in a wide range of Q^2 and x.
- ◆ Study non-perturbative contributions from High Twists, PCAC, etc. and quark-hadron duality in different structure functions $F_2, xF_3, R = F_L/F_T$.
- Nuclear modifications of nucleon form factors e.g. using NC elastic, CC quasi-elastic and resonance production.
- ◆ Coherent meson production off nuclei in CC & NC and diffractive physics.

⇒ Synergy with Heavy Ion and EIC physics programs for cold nuclear matter effects.

S. Kulagin and R.P., NPA 765 (2006) 126; PRD 76 (2007) 094023, PRC 90 (2014) 045204

Ratio of Charged Current structure functions on 207 Pb and isoscalar nucleon (p+n)/2

S. Kulagin and R.P., NPA 765 (2006) 126; PRD 76 (2007) 094023, PRC 90 (2014) 045204

 \implies Substantial difference with respect to charged lepton scattering.

S. Kulagin and R.P., PRD 76 (2007) 094023

Comparing Ar and H measurements imposes stringent constraints on the nuclear smearing in Ar

Understanding of nuclear smearing (response function for unfolding) crucial for systematics in DUNE oscillation analyses

TESTS OF ISOSPIN (CHARGE) SYMMETRY

★ Extraction of sin² θ_W from νN DIS sensitive to violations of isospin symmetry in nucleon, u_{p(n)} ≠ d_{n(p)}. Measure ν AND ν̄ on HAND C TARGETS: $R_{2,3}^{H} \stackrel{\text{def}}{\equiv} \frac{F_{2,3}^{\bar{\nu}p}}{F_{2,3}^{\nu p}}(x,Q^{2}) = \frac{F_{2,3}^{\nu n}}{F_{2,3}^{\nu p}}; \qquad R_{2,3}^{C} \stackrel{\text{def}}{\equiv} \frac{F_{2,3}^{\bar{\nu}C}}{F_{2,3}^{\nu C}}(x,Q^{2}) - 1 = \frac{\Delta F_{2,3}^{\bar{\nu}-\nu}}{F_{2,3}^{\nu}}$

- Structure function ratio reduces systematic uncertainties;
- Need to take into account charm quark effects $\propto \sin^2 \theta_C$. Sensitivity to m_c ;
- A non-vanishing strange sea asymmetry $s(x) \bar{s}(x)$ would affect the result. Need combined analysis with charm production in ν and $\bar{\nu}$ interactions;
- Potential effect of nuclear environment e.g. with Coulomb field.
- Collect ν and $\bar{\nu}$ interactions on both Ca AND Ar TARGETS to disentangle nuclear effects from isospin effects in nucleon structure functions.
 - Measure ratios $R^A_{2,3} = \Delta F^{(\bar{\nu}-\nu)A}_{2,3} / F^{\nu A}_{2,3}(x,Q^2)$;
 - Use heavier isoscalar target, $^{20}_{40}$ Ca, to verify nuclear effects in $^{6}_{12}$ C;
 - Use second target with isovector component but same A as Ca: $^{18}_{40}$ Ar.

SUMMARY

- The intensity and $\nu(\bar{\nu})$ spectra available at the LBNF offer a unique opportunity for neutrino physics, if coupled with a high resolution ND of a few tons
- Possible to achieve a control of configuration, material & mass of neutrino targets similar to electron experiments & use a suite of various target materials.
- ◆ A novel technique can provide high statistics $O(10^6)$ samples of $\nu(\bar{\nu})$ -hydrogen interactions, allowing precisions in the measurement of $\nu \& \bar{\nu}$ fluxes < 1%.
- ◆ Turn the DUNE ND site into a general purpose v & v physics facility with broad program complementary to ongoing fixed-target, collider and nuclear physics efforts
 European Particle Physics Strategy Update 2018-2020: https://indico.cern.ch/event/765096/contributions/3295805/

 \implies Discovery potential & hundreds of diverse physics topics

Photo from workshop in Frascati, March 2019

Reuse existing KLOE magnet + ECAL and fill it with STT & nuclear targets

A Proposal to enhance the DUNE Near-Detector Complex

G. Adamov^{1,10}, L. Alvarez Ruso², I. Bagaturia¹, P. Bernardini^{3,4}, S. Bertolucci^{5,6},
M. Bhattacharjee⁷, B. Bhuyan⁷, S. Biagi⁸, A. Caminata⁹, A. Cervelli⁵, D. Chokheli^{1,10},
A. Chukanov¹⁰, S. Davini⁹, S. Di Domizio^{9,11}, C. Distefano⁸, L. Di Noto^{9,11}, M. Diwan⁴¹²,
H. Duyang¹³, A. Falcone^{14,15}, O. Fedin¹⁶, A. Ferrari¹⁷, F. Ferraro^{9,11}, A. Gabrielli⁵,
M. Guerzoni⁵, B. Guo¹³, M.A. Iliescu^{18,19}, A.L. Kataev²⁰, A. Khvedelidze^{1,10}, B. Kirby¹²,
U. Kose^{5,19}, S.A. Kulagin²⁰, C. Kullenberg¹⁰, C. Kuruppu¹³, I. Lomidze¹, G. Laurenti⁵,
V. Maleev¹⁶, G. Mandrioli⁵, N. Mauri^{5,6}, P. Mehta²¹, S.R. Mishra¹³, N. Moggi^{5,6},
A. Montanari⁵, S. Movchan¹⁰, S. Nagu²², F. Olness²³, M. Pallavicini^{9,11}, R. Papaleo⁸,
L. Pasqualini^{5,6}, L. Patrizii⁵, R. Petti ¹³, V. Pia^{5,6}, F. Poppi^{5,6}, V.K.S. Potukuchi²⁴,
M. Pozzato^{5,6}, G. Riccobene⁸, P.R. Sala²⁵, O. Samoylov¹⁰, P. Sapienza⁸, F. H. Sawy^{26,28},
Ja. Singh²², Jy. Singh²², V. Singh²⁷, G. Sirri⁵, L. Stanco²⁶, A. Surdo⁴, M. Tenti⁵,
F. Terranova^{14,15}, G. Testera⁹, M. Torti^{14,15}, N. Tosi⁵, R. Travaglini²⁶, Z. Tsamalaidze^{1,10},

Currently 74 physicists from 23 institutions and 7 countries

SUMMARY

- The intensity and $\nu(\bar{\nu})$ spectra available at the LBNF offer a unique opportunity for neutrino physics, if coupled with a high resolution ND of a few tons
- Possible to achieve a control of configuration, material & mass of neutrino targets similar to electron experiments & use a suite of various target materials.
- ◆ A novel technique can provide high statistics $O(10^6)$ samples of $\nu(\bar{\nu})$ -hydrogen interactions, allowing precisions in the measurement of $\nu \& \bar{\nu}$ fluxes < 1%.
- Turn the DUNE ND site into a general purpose v & v physics facility with broad program complementary to ongoing fixed-target, collider and nuclear physics efforts
 European Particle Physics Strategy Update 2018-2020: https://indico.cern.ch/event/765096/contributions/3295805/
 - \implies Discovery potential & hundreds of diverse physics topics

Looking for suggestions, feedback and/or potential interest

Backup slides

LBNF: Long-Baseline Neutrino Facility

DUNE: Deep Underground Neutrino Experiment

	ν_{μ} -H CC			$\bar{\nu}_{\mu}$ -H CC						
Process	$\mu^- p \pi^+$	$\mu^{-}p\pi^{+}X$	$\mu^{-}n\pi^{+}\pi^{+}X$	Inclusive	$\mu^+ p \pi^-$	$ \mu^+ n\pi^0 $	$\mu^+ n$	$\mu^+ p \pi^- X$	$ \mu^+ n \pi \pi X $	Inclusive
Eff. ε	96%	89%	75%	93%	94%	84%	75%	85%	82%	80%
Purity	95%	93%	70%	93%	95%	84%	80%	94%	84%	84%

TABLE I. Efficiency ε and purity for the kinematic selection of H interactions from the CH₂ plastic target using the likelihood ratio $\ln \lambda^{\rm H} + \ln \lambda^{\rm H}_{\rm IN}$ or $\ln \lambda^{\rm H}_4 + \ln \lambda^{\rm H}_{\rm IN}$. For the $\mu^+ n$ QE topologies $\ln \lambda^{\rm H}_{\rm QE}$ is used instead. The cuts applied for each channel are chosen to maximize the sensitivity defined as $S/\sqrt{S+B}$, where S is the H signal and B the C background. The CC inclusive samples are obtained from the combination of the corresponding exclusive channels.

	ν_{μ} -H CC, $\varepsilon \equiv 75\%$			$\bar{\nu}_{\mu}$ -H CC, $\varepsilon \equiv 75\%$						
Process	$\mu^- p \pi^+$	$\mu^- p \pi^+ X$	$\mu^- n\pi^+ \pi^+ X$	Inclusive	$\mu^+ p \pi^-$	$\mu^+ n \pi^0$	$\mu^+ n$	$\mu^+ p \pi^- X$	$\mu^+ n \pi \pi X$	Inclusive
Purity	99%	99%	70%	98%	99%	90%	80%	98%	90%	86%

TABLE II. Purity achieved with the kinematic selection of H interactions from the CH₂ plastic target using a cut on the likelihood ratio $\ln \lambda^{\rm H} + \ln \lambda^{\rm H}_{\rm IN}$ or $\ln \lambda^{\rm H}_4 + \ln \lambda^{\rm H}_{\rm IN}$ resulting in the fixed H signal efficiency ε specified. For the $\mu^+ n$ QE topologies $\ln \lambda^{\rm H}_{\rm QE}$ is used instead. For illustration purpose, the value of the efficiency is chosen as the lowest among the ones listed in Tab. I for individual topologies. The CC inclusive samples are obtained from the combination of the corresponding exclusive channels.

STRANGENESS CONTENT OF NUCLEON

NC ELASTIC SCATTERING *neutrino-nucleus is sensitive to the strange quark* contribution to nucleon spin, Δs , through axial-vector form factor G_1 :

$$G_1 = \left[-\frac{G_A}{2} \tau_z + \frac{G_A^s}{2} \right]$$

At $Q^2 \to 0$ we have $d\sigma/dQ^2 \propto G_1^2$ and the strange axial form factor $G_A^s \to \Delta s$.

• Measure NC/CC RATIOS as a function of Q^2 to reduce systematics ($\sin^2 \theta_W$ as well):

$$R_{\nu} = \frac{\sigma(\nu p \to \nu p)}{\sigma(\nu n \to \mu^{-} p)}; \qquad R_{\bar{\nu}} = \frac{\sigma(\bar{\nu} p \to \bar{\nu} p)}{\sigma(\bar{\nu} p \to \mu^{+} n)}$$

- Compare axial current charge radius r_A^2 with muon capture in muonic hydrogen (discrepancies);
- Expect $\sim 2 \times 10^6 \ \nu$ NC and $\sim 1 \times 10^6 \ \bar{\nu}$ NC events (BNL E734: 951 νp and 776 $\bar{\nu} p$);
- Precision measurement over an extended Q^2 range reduces systematic uncertainties from the Q^2 dependence of vector $(F_{1,2}^s)$ and axial (G_A^s) strange form factors.
- Direct probe of s(x) & $\bar{s}(x)$ content of nucleon from charm production in both dilepton (~ 100k $\mu\mu$ & μe) and exclusive charmed hadrons (e.g. D^{*+}, D_s, Λ_c).

♦ NOMAD measurement allows reduction of s(x) uncertainty down to ~ 3%: $\kappa_s = \int_0^1 x(s+\bar{s}) dx / \int_0^1 x(\bar{u}+\bar{d}) dx = 0.591 \pm 0.019 \qquad (\text{NPB 876 (2013) 339})$

- ◆ Improved determination of the $\overline{\text{MS}}$ mass from global PDF fits: $m_c(m_c) = 1.252 \pm 0.018 \pm 0.010(QCD) \qquad (S. Alekhin et al., PRD 96 (2017) 014011)$
- Recent ATLAS claims of enhanced s(x) seems related to overconstrained PDF parameterization (S. Alekhin et al., PLB 777 (2018) 134, PRD 91 (2015) 094002)

Roberto Petti

USC

HELICITY, C-PARITY AND ISOSPIN

igstarrow The amplitude controlling nuclear shadowing depends on the helicity of boson ($\pm 1, 0$)

$$a_0 \rightarrow F_L$$

$$a_T = (a_{+1} + a_{-1})/2 \rightarrow F_1$$

$$a_\Delta = (a_{+1} - a_{-1})/2 \rightarrow F_3$$

The amplitude depends on the isospin I (proton and neutron dependence) and on the

C-parity (ν and $\bar{\nu}$ dependence), $a_h^{(I,C)}$: $a_T^{(0,+)} \rightarrow F_1^{e/\mu(p+n)}$ and $F_1^{(\nu+\bar{\nu})(p+n)}$ $a_{\Delta}^{(0,-)} \rightarrow F_3^{(\nu+\bar{\nu})(p+n)}$ $a_T^{(1,+)} \rightarrow F_1^{e/\mu(p-n)}$ and $F_1^{(\nu+\bar{\nu})(p-n)}$ $a_{\Delta}^{(1,-)} \rightarrow F_3^{(\nu+\bar{\nu})(p-n)}$ $a_{\Delta}^{(0,-)} \rightarrow F_3^{(\nu-\bar{\nu})(p-n)}$ $a_{\Delta}^{(0,+)} \rightarrow F_3^{(\nu-\bar{\nu})(p-n)}$ $a_{\Delta}^{(1,-)} \rightarrow F_3^{(\nu-\bar{\nu})(p-n)}$ $a_{\Delta}^{(1,+)} \rightarrow F_3^{(\nu-\bar{\nu})(p-n)}$

 \implies Virtual photon γ^* C-even only, (anti)neutrino interactions both C-even and C-odd

◆ Isoscalar and Isovector spectral functions, P_0 and P_1 , enter nuclear convolution $F_2^A / A = \langle \frac{F_2^p + F_2^n}{2} \rangle_0 + \frac{\beta}{2} \langle F_2^p - F_2^n \rangle_1 \quad \beta = (Z - N) / A$

Roberto Petti

- Limited $\nu(\bar{\nu})$ data on ratios $\sigma^{A'}/\sigma^A$ (BEBC, MINER νA) and differential cross-sections $d\sigma^2/dxdy$ (NuTeV, CCFR, CHORUS)
- ♦ Model predictions agree with data in the bulk of phase space but show discrepancies at x < 0.05 and x > 0.5 (S. Kulagin and R.P., NPA 765 (2006) 126; PRD 76 (2007) 094023).
 ⇒ Need new precision measurements with both v AND v

ADDITIONAL CHANNELS

 $R_{\nu} = \frac{\sigma(\nu p \to \nu p)}{\sigma(\nu n \to \mu^{-} p)}; \qquad R_{\bar{\nu}} = \frac{\sigma(\bar{\nu} p \to \bar{\nu} p)}{\sigma(\bar{\nu} p \to \mu^{+} n)}$

Determine axial form factor G_A from the CC sample.

- Significant reduction of systematics from NC/CC ratios.
- Estimate Q^2 values in NC from 2-body kinematics;
- $\sin^2 \theta_W$ sensitivity in vector $F_{1,2}$ form factors.

 \implies Systematics from FF, neutrons, nuclear effects?

Additional sensitivity from the NC/CC ratio of coherent ρ meson production:

$$R_{\rho} = \frac{\sigma(\nu_{\mu}A \rightarrow \nu_{\mu}\rho^{0}A)}{\sigma(\nu_{\mu}A \rightarrow \mu^{-}\rho^{+}A)} = \frac{1}{2} \left(1 - 2\sin^{2}\theta_{W}\right)^{2}$$

expect ~ 30k coherent ρ^0 and 200k coherent ρ^+ in ND. \implies Systematics from background subtraction in the coherent ρ^0 selection?

USC