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PRECISION PHYSICS: e PROBE N
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4 Reference QCD studies in ep at HERA with measurements ~ 102 of the nucleon struc-
ture complementary to fixed target from JLab, COMPASS,SLAC,NMC,BCDMS etc.

= Can a modern v () facility deliver comparable precisions
adding insights complementary to planned fixed-target & collider programs?
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PRECISION PHYSICS: v/v PROBE 4

4 Neutrinos offer an ideal probe for EW physics and partonic/hadronic structure of matter:

e Clean probe since only weak interaction, full polarization;
e Complete flavor separation in Charged Current interactions (d/u, s/s, d/u)
e Separation of valence (xF3) and sea (F) distributions, complementary to e¥.

—> Potential so far only partially explored due to 3 (main) limitations

4+ |STATISTICS
Tiny cross-sections with limited beam intensities required massive & coarse detectors.

4+ | TARGETS
Need of massive nuclear targets did not allow a precise control of the interactions.

4+ | FLUXES
Incoming (anti)neutrino energy unknown implied substantial flux uncertainties.
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STATISTICS vs. RESOLUTION

tion: affected by systematics on I, Ey scales, nuclear targets & flux

4 Existing detectors compromise between high (low) statistics and coarse (high) resolu-

Experiment | Mass | v, CC Stat. Target E, (GeV)| AE, | AEy
CDHS 750 t 107 p,Fe 20-200 | 2.0% | 2.5%
BEBC various | 5.7x10* p,D,Ne 10-200

CCFR 690 t 1.0x10° Fe 30-360 1.0% 1.0%
NuTeV 690 t 1.3x10° Fe 30-360 0.7% | 0.43%
CHORUS 100 t 3.6x10° Emul.,Pb 10-200 25% | 5.0%
NOMAD 27t | 1.5x10° C,Fe 5200 |[0.2%]| 0.5%
MINOS ND | 980 t 3.6x10° Fe 3-50 2-4% | 56%
T2K ND 1.9t 10° CH,H,O 0.2-5 0.6% | 2-4%
MINERV A b4t 107 CH,C,Fe,Pb 1-30 2%

— Significant progress requires about 10> CC AND high resolution AE,, < 0.2%

4 Precision EW and QCD studies prefer high energy (anti)neutrinos

—> Modern beam facilities optimized at lower energies for detection of oscillations
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4 Available LBNF — Long-Baseline Neutrino Facility — beam optimized for FD v, appearance:
Conceivable dedicated run after 5y FHC + 5y RHC with the "standard” beams optimized for CP

e LBNF: 120 GeV p, 1.2 MW, 1.1x10** pot/y, ND at 574m;
o LBNF upgrade: 120 GeV p, |2.4 MW (x 2) |, ~3x 10*! pot/y.

4 Assume a modest 2y FHC run with v, optimized beam & LBNF upgrade

— Can afford a high resolution ND of a few tons and still collect desired statistics ~ 103
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CONTROL OF TARGETS

4 Precision EW & QCD measurements require control of v-target(s) as in e* DIS:

e Massive v detectors intrinsically limited by the knowledge of the target composition & materials;
e Possible accurate control of target(s) by separating target(s) from active detector(s);

e Thin targets spread out uniformly within tracker by keeping low density|0.005 < p < 0.18 g/cm? |.

—> Straw Tube Tracker (STT) in B ~ 0.6 T with 47 electromagnetic calorimeter

4 Targets (100% purity) account for
~ 97% of STT mass (straws 3%)
and can be tuned to achieve desired

statistics & resolutions.

4 Separation from excellent vertex,
angular & timing resolutions.

4 Thin targets can be replaced during
data taking: C, Ca, Ar, Fe, Pb, etc.
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4 Need to understand nuclear modifications & corresponding systematic uncertainties:

o Use of heavy target material(s) unavoidable to achieve desired statistics;
e Complexity of weak current (vs. EM) + substantial nuclear modifications (primary & FSI);
e Cannot rely only on model corrections for precision EW & QCD studies.

— Necessary condition availability of (complementary) free nucleon target: hydrogen
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4 Novel technique to get v(v)-Hydrogen by subtracting CHy and C targets (solid H):

e Exploit high resolutions & control of chemical composition and mass of targets in STT,;
e Model-independent data subtraction of dedicated C (graphite) target from main CHy target;
e Kinematic selection provides large H samples of inclusive & exclusive CC topologies

with 80-95% purity and >90% efficiency before subtraction.

= Viable and realistic alternative to liquid Hy detectors
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CONTROL OF FLUXES 10

4 Relative v, flux vs. E, from exclusive v,p — u~pr™ on Hydrogen:

o Select well reconstructed u~pr™ topology on H (6p/p ~ 3.5%);

e Cut|v < 0.5(0.75) GeV/| flattens cross-sections reducing uncertainties on E,, dependence;

e Systematic uncertainties dominated by muon energy scale (AE, ~ 0.2% in STT from Ky mass).

= Dramatic reduction of systematics vs. techniques using nuclear targets
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11
4 Relative v, flux vs. E, from exclusive v,p — pu*n QE on Hydrogen:

e F, from QE kinematics on H and reconstructed direction of interacting neutrons (~80%);

e Cut|v < 0.1(0.25) GeV/| flattens cross-sections reducing uncertainties on E,, dependence;

o Systematics and total uncertainties comparable to relative v, flux from v,p — p~pr™ on H.
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GENERAL PURPOSE PHYSICS FACILITY 1

4 Possible to address the main limitations of neutrino experiments (statistics, control of
targets & fluxes) largely filling the precision gap with electron experiments.

= Exploit the unique properties of the (anti)neutrino probe
to study fundamental interactions & structure of nucleons and nuclei

4 Turn the LBNF ND site into a general purpose v& v physics facility with broad
program complementary to ongoing fixed-target, collider and nuclear physics efforts:

o Measurement of sin? Oy and electroweak physics;

e Precision tests of isospin physics & sum rules (Adler, GLS);

o Measurements of strangeness content of the nucleon (s(x),s(x), As, etc.);

e Studies of QCD and structure of nucleons and nuclei;

e Precision tests of the structure of the weak current: PCAC, CVC;

e Measurement of nuclear physics and (anti)-neutrino-nucleus interactions; etc. .....
e Precision measurements as probes of New Physics (BSM);

o Searches for New Physics (BSM) .....
= Discovery potential & hundreds of diverse physics topics

4 Same control of targets & fluxes reduces systematics for long-baseline oscillations.
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ELECTROWEAK MEASUREMENTS 13

4 Sensitivity expected from v scattering at LBNF comparable to the Collider precision:

Different scale of momentum transfer with respect to LEP/SLD (off Z° pole);

Direct measurement of neutrino couplings to Z°

= Only other measurement LEPT',,,

Single experiment to directly check the running of sin® 6y ;

Independent cross-check of the NuTeV sin® Oy, anomaly (~ 30 in v data) in a similar Q? range.
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ADLER SUM RULE & ISOSPIN PHYSICS

4 The Adler integral provides the

of the target and is derived from current algebra:
5% = b & (R~ B = 1,

o At large Q? (quarks) sensitive to (s — 5) asymmetry,

ISOSPIN

isospin violations, heavy quark production

e Apply to nuclear targets and test nuclear effects
(S. Kulagin and R.P. PRD 76 (2007) 094023)

— Precision test of S, at different ()* values

4 Only measurement available from BEBC based on 5,000
vp and 9,000 vp (D. Allasia et al., ZPC 28 (1985) 321)

4 Direct measurement of F3% /Fy% free from nuclear un-

certainties and comparisons with e/ DIS

—> d/u at large x and verify limit for v — 1
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NUCLEAR MODIFICATIONS OF NUCLEON PROPERTIES

4 Availability of v-H & v-H allows direct measurement of nuclear modifications of Fj 3:

def oA Fra

b 2,3 2\ . 2,3

Ry = im0, Q7) = 523
237153 2,3

e Comparison with e/ DIS results and nuclear models;
e Study flavor dependence of nuclear modifications using v & v (W= /Z helicity, C-parity, Isospin);
o Effect of the axial-vector current.

4 Study nuclear modifications to parton distributions in a wide range of Q* and .

4 Study non-perturbative contributions from High Twists, PCAC, etc. and quark-hadron
duality in different structure functions Fs, zF3, R = F/Fr.

4 Nuclear modifications of nucleon form factors e.g. using NC elastic, CC quasi-elastic
and resonance production.

4 Coherent meson production off nuclei in CC & NC and diffractive physics.

= Synergy with Heavy lon and EIC physics programs for cold nuclear matter effects.

Roberto Petti
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4 Neutrino scattering is characterized by an
AXIAL-VECTOR CURRENT in ad-

dition to the the Vector current.

4 Axial Current is only Partially Conserved
(PCAC) and dominates SFs at low Q*:

EOW 2
Fy — F = Q°—0
T

4 The finite PCAC contribution to F7
strongly affects the asymptotic behaviour

of|[R =0 /or| for Q* — 0:

2
Fr ~ Q2 FLNfW;”>0
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= Substantial difference with respect to charged lepton scattering.

S. Kulagin and R.P., PRD 76 (2007) 094023
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TESTS OF ISOSPIN (CHARGE) SYMMETRY

4 Extraction of sin® 0y, from vIN DIS sensitive to violations of isospin symmetry in

nucleon, Uy # dpp). Measurev AND v on| H AND C TARGETS

Up vn vC v—v
RHE def F2,3 (x Q2> 123, ¢ def F2,3 (x Qz) 1 — AF2,3
2,3 — vp \*) — vpo 2,3 — vC \* ot v
F2,3 F2,3 F2,3 F2,3

e Structure function ratio reduces systematic uncertainties;

o Need to take into account charm quark effects  sin® 0¢. Sensitivity to [m.

e A non-vanishing strange sea asymmetry s(x) — §(x) would affect the result.
Need combined analysis with charm production in v and v interactions;

Potential effect of nuclear environment e.g. with Coulomb field.

4 Collect v and v interactions on both| Ca AND Ar TARGETS | to disentangle

nuclear effects from isospin effects in nucleon structure functions.

o Measure ratios Rj 3 = AFQ(Z_V)A/FQ”’@?(QS, Q?);

e Use heavier isoscalar target, 33 Ca, to verify nuclear effects in $,C;

e Use second target with isovector component but same A as Ca: SAr.

Roberto Petti
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SUMMARY

4 The intensity and v(U) spectra available at the LBNF offer a unique opportunity for
neutrino physics, if coupled with a high resolution ND of a few tons

4 Possible to achieve a control of configuration, material & mass of neutrino targets
similar to electron experiments & use a suite of various target materials.

4 A novel technique can provide high statistics O(10°) samples of v/(7)-hydrogen
interactions, allowing precisions in the measurement of v & v fluxes < 1%.

4 Turn the DUNE ND site into a general purpose v & v physics facility with broad
program complementary to ongoing fixed-target, collider and nuclear physics efforts

European Particle Physics Strategy Update 2018-2020:
https://indico.cern.ch/event/765096/contributions/3295805/

= Discovery potential & hundreds of diverse physics topics
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Photo from workshop in Frascati, March 2019
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Reuse existing KLOE magnet + ECAL
and fill it with STT & nuclear targets
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A Proposal to enhance the DUNE Near-Detector Complex

G. Adamov™!?, L. Alvarez Ruso?, I. Bagaturia!, P. Bernardini®*, S. Bertolucci®®,

M. Bhattacharjee”, B. Bhuyan’, S. Biagi®, A. Caminata®, A. Cervelli®, D. Chokheli*!°,
A. Chukanov'®, S. Davini?, S. Di Domizio®!!, C. Distefano®, L. Di Noto”!!, M. Diwan*!?,
H. Duyang®®, A. Falcone!*1®, O. Fedin'®, A. Ferrari'”, F. Ferraro®!!, A. Gabrielli®,
M. Guerzoni®, B. Guo'®, M.A. Tliescu'®', A.L. Kataev?®, A. Khvedelidze''1?, B. Kirby!?,
U. Kose>!?, S.A. Kulagin?®, C. Kullenberg!®, C. Kuruppu'?, I. Lomidze!, G. Laurenti®,
V. Maleev!®, G .Mandrioli®, N. Mauri®®, P. Mehta?!, S.R. Mishra!®, N. Moggi®>®°,

A. Montanari®, S. Movchan!®, S. Nagu??, F. Olness*, M. Pallavicini”!!, R. Papaleo®,
L. Pasqualini®®, L. Patrizii®, R. Petti 13, V. Pia®%, F. Poppi®®, V.K.S. Potukuchi®*,
M. Pozzato®®, G. Riccobene®, P.R. Sala?®, O. Samoylov!?, P. Sapienza®, F. H. Sawy?%2%,
Ja. Singh??, Jy. Singh??, V. Singh??, G. Sirri®, L. Stanco?®, A. Surdo*, M. Tenti,

F. Terranova!®' G. Testera®, M. Torti!41° N. Tosi®, R. Travaglini?®, Z. Tsamalaidze'1?,
N. Tsveraval'l?, and S. Zucchelli®®

Currently 74 physicists from 23 institutions and 7 countries
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SUMMARY

4 The intensity and v(v) spectra available at the LBNF offer a unique opportunity for
neutrino physics, if coupled with a high resolution ND of a few tons

4 Possible to achieve a control of configuration, material & mass of neutrino targets
similar to electron experiments & use a suite of various target materials.

4 A novel technique can provide high statistics O(10°) samples of v/(17)-hydrogen
interactions, allowing precisions in the measurement of v & v fluxes < 1%.

4 Turn the DUNE ND site into a general purpose v & v physics facility with broad
program complementary to ongoing fixed-target, collider and nuclear physics efforts

European Particle Physics Strategy Update 2018-2020:
https://indico.cern.ch/event/765096/contributions/3295805/

= Discovery potential & hundreds of diverse physics topics

Looking for suggestions, feedback and/or potential interest
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Sanford
Underground
Research
Facility

Fermilab

----------
- -

LBNF': Long-Baseline Neutrino Facility

DUNE: Deep Underground Neutrino Experiment
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v,-H CC 7,-H CC
Process|pu~prt|u~prt X |p~natnt X |Inclusive | ppr~ | pTna® | ptn|ptpr= X | ptnaor X [Inclusive

Eff. € 96% 89% 75% 93% 94% | 84% |75%| 85% 82% 80%
Purity | 95% 93% 70% 93% 95% | 84% [80%| 94% 84% 84%

TABLE I. Efficiency € and purity for the kinematic selection of H interactions from the CHs plastic
target using the likelihood ratio In AH+In )\IHN or In A\l +1In )\FN. For the u™n QE topologies In )\gE
is used instead. The cuts applied for each channel are chosen to maximize the sensitivity defined
as S/v/S + B, where S is the H signal and B the C background. The CC inclusive samples are
obtained from the combination of the corresponding exclusive channels.

v,-H CC, e = 75% v,-H CC, € = 75%
Process|pu~prt|u=prt X |p nrtnt X|Inclusive|ptpr— | pwtnal | ptn|ptpr~ X | ptnrr X |Inclusive
Purity | 99% 99% 70% 98% 99% | 90% |80%| 98% 90% 86%

TABLE II. Purity achieved with the kinematic selection of H interactions from the CHy plastic
target using a cut on the likelihood ratio In A\H+1In A or In Ail4+In Al resulting in the fixed H signal
efficiency e specified. For the u™n QE topologies In )\gE is used instead. For illustration purpose,
the value of the efficiency is chosen as the lowest among the ones listed in Tab. I for individual

topologies. The CC inclusive samples are obtained from the combination of the corresponding
exclusive channels.
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STRANGENESS CONTENT OF NUCLEON

4 | NCELASTIC SCATTERING | neutrino-nucleus is sensitive to the strange quark

contribution to nucleon spin, As, through axial-vector form factor G1:

G = {—G2—A7'Z + G;L‘}

At Q* — 0 we have do/dQ? o< G? and the strange axial form factor G5 — As.

4 Measure| NC/CC RATIOS | as a function of ()* to reduce systematics (sin* Oy, as well):

_ o(vp—vup) | ~__ _o(vp—up)
R, = o(vn—pu=p)’ iy = o(vp—ptn)

e Compare axial current charge radius r% with muon capture in muonic hydrogen (discrepancies);
o Expect ~ 2 x10% v NC and ~ 1 x10° v NC events (BNL E734: 951 vp and 776 vp);

e Precision measurement over an extended (Q? range reduces systematic uncertainties from the Q>
dependence of vector (Fy ;) and axial (G?) strange form factors.

4 Direct probe of s(x) & s(x) content of nucleon from charm production in both dilepton
(~ 100k pupu&pe) and exclusive charmed hadrons (e.g. D**, Dy, A.).

Roberto Petti
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+ NOMAD measurement allows reduction of s(x) uncertainty down to ~ 3%:
ks = [ 2(s 4 5)dx/ [y (@ + d)dx = 0.591 & 0.019 (NPB 876 (2013) 339)

4+ Improved determination of the MS mass from global PDF fits:
me(m.) = 1.252 £+ 0.018 £ 0.010(QCD) (S. Alekhin et al., PRD 96 (2017) 014011)

4 Recent ATLAS claims of enhanced s(x) seems related to overconstrained PDF
parameterization (S. Alekhin et al., PLB 777 (2018) 134, PRD 91 (2015) 094002)
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HELICITY, C-PARITY AND ISOSPIN

4 The amplitude controlling nuclear shadowing depends on the helicity of boson (£1,0)

ag — FT
ar = (CL_|_1—|—CL_1)/2—>F1
an = (a1 —a_1)/2 — F3

4 The amplitude depends on the isospin I (proton and neutron dependence) and on the

C'-parity (v and v dependence), aﬁf’c) :

GOy pelen) g peoe) J0) y pEE)
a<Tl,+> L R anq pEne-n) o)y g
J0) —y pemE) J0F) _y pemE)
N I JF g

= Virtual photon v* C'-even only, (anti)neutrino interactions both C'-even and C'-odd

4 Isoscalar and Isovector spectral functions, |'Py and Py |, enter nuclear convolution

B S mpy, = (2-N)A

/A= (22 +

Roberto Petti
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Neutrino Antineutrino

1.5 1.5
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8 8
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«© 1.3 © 1.3
(=] (=]

1.2 1.2 +

1.1 1.1

1o - e ® L 1 -5 G . 7 T
0.9 | 0.9 [
08 [ 0.8
r e NuTeV (Fe) r e NuTeV (Fe)
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4 Limited v(D) data on ratios o' /o (BEBC, MINERVA) and differential cross-sections
do?/dzdy (NuTeV, CCFR, CHORUS)

4 Model predictions agree with data in the bulk of phase space but show discrepancies
at x < 0.05 and > 0.5 (S. Kulagin and R.P., NPA 765 (2006) 126; PRD 76 (2007) 094023).

= Need new precision measurements with both v AND v
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ADDITIONAL CHANNELS 29

BNL E734
4 Ratio of NC elastic scattering neutrino-nucleus to CC - -
quasi-elastic scattering for both v and U (sin” Oy ): [ | ]
_=p ‘\ﬂg‘ <, P, P

R, = o(vp—vp) . R, = o(vp—vp) e

o(vn—p=p)’ o(Up—ptn)

\Q

TP TP

-

T IIIIIIII

Lyl

Determine axial form factor G 4 from the CC sample.
e Significant reduction of systematics from NC/CC ratios.

o Estimate Q? values in NC from 2-body kinematics;

Flux Averaged do/d” {en’r(Gevic)’]

o sin’ Oy sensitivity in vector I} o form factors. »
r t - L i 1

10 o6 062 Oa De 68 F0 1z ia
Q2 [(Gevrsc)?)

= Systematics from FF, neutrons, nuclear effects?

4+ Additional sensitivity from the NC/CC ratio of coherent p meson production:

o A—vupPA) 1 .2 2
R, = U(yu"A_m‘j;A) =3 (1 — 2sin 8W>

expect ~ 30k coherent p® and 200k coherent p* in ND.
— Systematics from background subtraction in the coherent p" selection?
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