# Constraining NSI and Sterile Neutrino Physics with $\nu_{ au}$ Appearance in DUNE

#### Anish Ghoshal

Laboratorie Nazionale Frascati - INFN University Roma Tre

anishghoshal1@gmail.com

October 8, 2019 CERN

Based on -

- (i) A. Ghoshal, A.Giarnetti and D.Meloni, arXiv:1906.06212
- (ii) A. Ghoshal, A.Giarnetti and D.Meloni, [draft in preparation 1911.xxxx]

## Outline of talk:

- Neutrino Oscillation.
- Deep Underground Neutrino Experiment (DUNE).
- $\nu_{\tau}$  Appearance in DUNE.
- Standard Physics & Effect of Systematics.
- Sterile Neutrino in 3+1 scheme.
- Non-Standard Interaction (NSI).
- Neutrino Decay.
- Extracting Further New Physics with  $\nu_{\tau}$ .

#### Introduction:

# Neutrino Oscillation is now well-known phenomena.

# Flavor changes happen during the propagation of neutrinos!



#### Introduction:

#### Probability of Neutrino Oscillation:

$$i\frac{d}{dx}\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = H^\nu \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix}$$

$$H^{\nu} = H_{\text{vac}} + H_{\text{mat}}$$
 and  $H^{\bar{\nu}} = (H_{\text{vac}} - H_{\text{mat}})^*$ 

$$H_{vac} = U \cdot \mathrm{Diag}(m_1^2/2E_{\nu}, m_2^2/2E_{\nu}, m_3^2/2E_{\nu}) \cdot U^{\dagger}$$

$$U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{bmatrix} \begin{bmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{-i\delta} & 0 & \cos\theta_{13} \end{bmatrix} \begin{bmatrix} \cos\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \delta_{\alpha\beta} - 4\Re \left[ \sum_{i>j}^{3} U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*} \sin^{2} \left( \frac{\Delta m_{ij}^{2} L}{4E} \right) \right] + 2\Im \left[ \sum_{i>j}^{3} U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*} \sin \left( \frac{\Delta m_{ij}^{2} L}{2E} \right) \right]$$

## Introduction:

#### NuFit values of the oscillation parameters:



# Deep Underground Neutrino Experiment:

#### DUNE in a nutshell:

- Intense beam of  $\nu_{\mu}$  fired from FermiLab at a large detector 1300 KM away.
- Large (40 kt) Underground Liquid Argon detector at Sanford Underground Research Facility (SURF).



# Deep Underground Neutrino Experiment:

#### Standard Phenomenology in DUNE:

#### ν<sub>e</sub> appearance

$$P(\nu_{\mu} \to \nu_{e}) \approx \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \left(\frac{\Delta m_{31}^{2} L}{4E}\right)$$

#### $v_{\mu}$ disappearance

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \approx 1 - (\sin^2 2\theta_{23} \cos^4 \theta_{13} + \sin^2 2\theta_{13} \sin^2 \theta_{23}) \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right)$$



# Calculation of Events - Standard

| $ u$ mode (150 kt $\cdot$ MW $\cdot$ year) |           |                                                   |       |
|--------------------------------------------|-----------|---------------------------------------------------|-------|
| $ u_e$ Signal NH (IH)                      | 861 (495) |                                                   |       |
| $ar{ u}_e$ Signal NH (IH)                  | 13 (26)   |                                                   |       |
| Total Signal NH (IH)                       | 874 (521) | _                                                 |       |
| Beam $ u_e + ar{ u}_e$ CC Bkgd             | 159       |                                                   |       |
| NC Bkgd                                    | 22        |                                                   |       |
| $ u_{	au} + ar{ u}_{	au}$ CC Bkgd          | 42        |                                                   |       |
| $ u_{\mu} + ar{ u}_{\mu} \; CC \; Bkgd$    | 3         |                                                   |       |
| Total Bkgd                                 | 226       | $ u$ mode (150 kt $\cdot$ MW $\cdot$ year)        |       |
| $\bar{\nu}$ mode (150 kt · MW · year)      |           | $\overline{ u_{\mu}}$ Signal                      | 10842 |
| $ u_e$ Signal NH (IH)                      | 61 (37)   | $ar{ u}_{\mu}$ CC Bkgd                            | 958   |
| $ar{ u}_e$ Signal NH (IH)                  | 167 (378) | NC Bkgd                                           | 88    |
| Total Signal NH (IH)                       | 228 (415) | $ u_{	au} + ar{ u}_{	au}$ CC Bkgd                 | 63    |
| Beam $ u_e + \bar{ u}_e$ CC Bkgd           | 89        | $\bar{\nu}$ mode (150 kt $\cdot$ MW $\cdot$ year) |       |
| NC Bkgd                                    | 12        | $ar{ u}_{\mu}$ Signal                             | 3754  |
| $ u_{	au} + ar{ u}_{	au}$ CC Bkgd          | 23        | $\nu_{\mu}$ CC Bkgd                               | 2598  |
| $ u_{\mu} + ar{ u}_{\mu} \; CC \; Bkgd$    | 2         | NC Bkgd                                           | 50    |
| Total Bkgd                                 | 126       | $ u_{	au} + ar{ u}_{	au}$ CC Bkgd                 | 39    |

#### Tau Detection

#### Detection

•  $\nu_{\mu} \rightarrow \nu_{\tau}$  channel has never been considered in the simulations of DUNE hitherto. In fact tau neutrinos are difficult to observe. Furthermore, the interactions of these neutrinos have a rather high energy threshold (3.4), which is why the number of events expected for this process is low.



Disclaimer - - we do not say this is the most suitable channel for detection.

# Signal and Backgrounds

We consider au o e as the detection channel. ICARUS proposal followed this strategy.

# $\begin{array}{c} \text{Signal} \\ v_{\mu} \text{->} \ v_{\tau} \ \text{oscillation} \end{array}$

# Backgrounds

 $v_{\mu}$  ->  $v_{e}$  oscillation  $v_{e}$  ->  $v_{e}$  from beam

We consider various configurations to understand their impact on final sensitivities.

- 20% & 10% Signal Uncertainties in the  $\nu_{\tau}$  channel.
- $\bullet~100\%~\&~33\%$  of electrons being detected (detection efficiency).
- S/B values of 2.46 and 18.6.
- Standard and Tau-Optimized Fluxes.

#### Neutrino Flux

The standard flux consists of beam delivering  $1.47 \times 10^{21}$  protons on target (POT) per year with 80 GeV energy running with 1.07 MW beam power and having 1.5 m NuMi (Neutrino Main Injector) style target. The  $\tau-$  optimized flux is as per proposed by the DUNE collaboration consists of  $1.1 \times 10^{21}$  protons on target (POT) per year with 120 GeV energy running with 1.2 MW beam power and having 1m NuMi style target.



#### Rate Estimation

#### A comparison of $\nu_{ au}$ events:

| u mode                                     |           | $ar{ u}$ mode                                            |    |
|--------------------------------------------|-----------|----------------------------------------------------------|----|
| $ u_{	au} $ Signal                         | 277       | 277 $\nu_{\tau}$ Signal                                  |    |
| $\bar{ u}_{	au}$ Signal                    | 26        | $\bar{ u}_{	au}$ Signal                                  | 85 |
| Total Signal                               | 303       | Total Signal 15                                          |    |
| $\nu_e + \bar{\nu}_e$ CC Background (beam) | 333 + 38  | $3 + 38$ $\nu_e + \bar{\nu}_e$ CC Background (beam) 117  |    |
| CC Background (oscillation)                | 1753 + 12 | $2 \mid \mid \nu_e$ CC Background (oscillation)   90 + 1 |    |

Figure: Standard Flux

| $\nu$ mode                                 |           | $\bar{\nu}$ mode                           |           |
|--------------------------------------------|-----------|--------------------------------------------|-----------|
| $ u_{	au} $ Signal                         | 2673      | $ u_{	au}$ Signal                          | 98        |
| $ar{ u}_{	au}$ Signal                      | 34        | $ar{ u}_{	au}$ Signal                      | 983       |
| Total Signal                               | 2707      | Total Signal                               | 1081      |
| $\nu_e + \bar{\nu}_e$ CC Background (beam) | 688 + 63  | $\nu_e + \bar{\nu}_e$ CC Background (beam) | 176 + 177 |
| CC Background (oscillation)                | 1958 + 11 | $\nu_e$ CC Background (oscillation)        | 76 + 324  |

Figure: Optimized Flux

Experiment run-time of (3.5 + 3.5) years. Latest NuFit values of the Oscillation parameters used.

## Correlation Studies

Standard Physics does not improve using  $\nu_{ au}$  channel.



# Comparison with OPERA

OPERA has observed 10 events in the  $\nu_{\mu} \to \nu_{\tau}$  channel. Using these events the  $\Delta m_{31}^2$ parameter uncertainty is about 26%. Using the  $\tau$  events in DUNE this can be largely improved.



Min. Relative Uncertainty: 8%



Min. Relative Uncertainty: 4.5%

# Short Baseline Anomaly

#### Long Discussions Yesterday:



### Sterile Neutrinos in 3+1 Scheme

The simplest model that includes sterile neutrinos is the 3 + 1 model, in which only one sterile neutrino is added.



 $U_{PMNS} = R(\theta_{34}) R(\theta_{24}) R(\theta_{23}; \ \delta_2) R(\theta_{14}) R(\theta_{13}; \ \delta_3) R(\theta_{12}; \ \delta_1)$ 

#### **Parameters**

(4.2)

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) = & 2|U_{14}|^{2}|U_{24}|^{2} + 4\Re[U_{23}^{*}U_{13}(U_{23}U_{13}^{*} + U_{24}U_{14}^{*})]\sin^{2}\left(\frac{\Delta m_{32}^{2}L}{4E}\right) + \\ & - 2\Im(U_{23}^{*}U_{13}U_{24}U_{14}^{*})\sin\left(\frac{\Delta m_{32}^{2}L}{2E}\right) \end{split}$$

 $U_{34}=\cos\theta_{14}\cos\theta_{24}\sin\theta_{34}.$ 



$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{\tau}) = & \underbrace{(U_{34})^{3} |U_{24}|^{2} + 4\Re[U_{23}^{*}U_{33}(U_{23}U_{33}^{*} + U_{34}U_{34}^{*}) \sin^{2}\left(\frac{\Delta m_{32}^{2}L}{4E}\right)}_{+ 2\Im(U_{23}^{*}U_{34}U_{34}U_{34}^{*}) \sin\left(\frac{\Delta m_{32}^{2}L}{2E}\right) \end{split} \tag{4.3}$$

We expect the addition of  $v_{\mu}$  ->  $v_{\tau}$  appearance channel to improve  $\theta_{34}$  sensitivity.

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 - 2|U_{24}|^2(1 - |U_{24}|^2) - 4[|U_{23}|^2(1 - |U_{23}|^2 - |U_{24}|^2)]\sin^2\left(\frac{\Delta m_{32}^2 L}{4E}\right) + \frac{4}{4}(4.4)$$

# Effect of Systematics

Effect of Systematics, detection efficiencies, S/B values and two fluxes on the measurement of  $\theta_{34}$ .

with the standard flux.



the optimised flux.

# **Correlation Studies**

We can see the maximum effect is on the improvement of  $\theta_{34}$  only.



# Correlation Studies



# New Physics: NSI

Diligent way to capture the effect of new physics, in terms of four-fermion interaction.

$$-\mathcal{L}_{ ext{NSI}}^{eff} = arepsilon_{lphaeta}^{fP} 2\sqrt{2}G_F(ar{
u}_lpha\gamma_
ho L
u_eta)(ar{f}\gamma^
ho Pf)$$

$$i\frac{d}{dt}\left(\begin{array}{c} \nu_e \\ \nu_\mu \\ \nu_\tau \end{array}\right) = \left[\begin{matrix} U_{PMNS} \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & \Delta_{21} & 0 \\ 0 & 0 & \Delta_{31} \end{array}\right) U_{PMNS}^\dagger + A \left(\begin{array}{ccc} 1 + \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon_{e\mu}^* & \epsilon_{\mu\mu} & \epsilon_{\mu\tau} \\ \epsilon_{e\tau}^* & \epsilon_{\tau\tau}^* & \epsilon_{\tau\tau} \end{array}\right) \right] \left(\begin{array}{c} \nu_e \\ \nu_\mu \\ \nu_\tau \end{array}\right)$$

$$\begin{split} P(\nu_{\alpha} \to \nu_{\beta}; \varepsilon_{e\mu}, \varepsilon_{e\tau}, \varepsilon_{\mu\mu}, \varepsilon_{\mu\tau}, \varepsilon_{\tau\tau}) &= P(\nu_{\alpha} \to \nu_{\beta}; 2 \text{ flavor in vacuum}) \\ &+ P(\nu_{\alpha} \to \nu_{\beta}; \varepsilon_{e\mu}, \varepsilon_{e\tau}) \\ &+ P(\nu_{\alpha} \to \nu_{\beta}; \varepsilon_{\mu\mu}, \varepsilon_{\mu\tau}, \varepsilon_{\tau\tau}), \end{split}$$

# New Physics: NSI

#### Tau Appearance Probability with NSI:



Figure: Solid/Dotted - - NH/IH. Green/Red/Blue - -  $\delta_{CP}=[0,\pi/2,-\pi/2]$ . Top/Bottom - - (No NSI;  $[\epsilon_{\mu\tau},\epsilon_{\tau\tau}]=(0.07,0.147)$ )



#### **NSI:**Correlation Studies

#### **NSI** probability

$$P_{\mu\tau} = P_{\mu\tau}^{SM} + \left(\frac{1}{2}\epsilon_{\tau\tau}\cos^2(2\theta_{23}) + 2\cos(2\theta_{23})\operatorname{Re}\{\epsilon_{\mu\tau}\}\right)(AL)\sin\left(\frac{\Delta m_{31}^2 L}{2E}\right) + \mathcal{O}(\epsilon^2)$$



In the optimized flux, we do not get the advantage of increased tau-statistics as  $\nu_e$  &  $\nu_\mu$  channels are also increased.

# **NSI** Correlation Studies



# NSI:Sensitivity on NSI parameter

Impact of Systematics, detection efficiencies, S/B values and two fluxes on the measurement of  $|\epsilon_{u\tau}|$ .



# Neutrino Decay

#### Neutrino Decay - - Introduction

$$\mathcal{L}_{\text{int}} = \frac{(g_s)_{ij}}{2} \bar{\nu}_i \nu_j S + i \frac{(g_p)_{ij}}{2} \bar{\nu}_i \gamma_5 \nu_j S$$

$$\nu_i \rightarrow \nu + S$$

$$\Gamma_i(L, E) = \exp(-\alpha_i \times L/E)$$

$$\alpha_i = rac{m_i}{ au_i}$$

$$\begin{pmatrix} \nu_{\alpha} \\ \nu_{s} \end{pmatrix} = \begin{pmatrix} U_{PMNS} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_{i} \\ \nu_{4} \end{pmatrix}$$

$$H=Uegin{bmatrix} 1 \ 2E egin{pmatrix} 0 & 0 & 0 \ 0 & \Delta m_{21}^2 & 0 \ 0 & 0 & \Delta m_{31}^2 \end{pmatrix} -irac{lpha_3}{2E}egin{pmatrix} 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 1 \end{pmatrix} \end{bmatrix}U^\dagger + egin{pmatrix} A & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{pmatrix}$$

# Why Interesting for DUNE

$$\begin{split} P_{\mu\mu}(E,L,\alpha_3) &= \left(\cos^2\theta_{23} + \sin^2\theta_{23} e^{-\frac{\alpha_3}{2E}L}\right)^2 \\ &- 4\cos^2\theta_{23}\sin^2\theta_{23} e^{-\frac{\alpha_3}{2E}L} \sin^2\left(\frac{\Delta m_{31}^2 L}{4E}\right) \\ &+ 4\cos^2\theta_{23}\sin^2\theta_{23} e^{-\frac{\alpha_3}{2E}L} \sin^2\left(\frac{\Delta m_{31}^2 L}{4E}\right) \\ \end{split}$$

Decay term causes vanishing of interference effects. Increase in Probability.



# Why Interesting for DUNE

DUNE is very suited to explore this inrceased probability region due to its L/E.



# Some Preliminary Results

Expected number of  $\nu_{\tau}$  events:

$$N_{ au} = \epsilon_{det} imes n_{p.o.t.} imes N_{Ar} imes \int dE_{\mu}(\phi) \sigma_{
u_{ au}}(E) P_{\mu au}(E,lpha_3)$$



Disclaimer - - preliminary calculations only. Final results may differ !

# Some Preliminary Results

#### Sensitivity of measurement of $\alpha$ :



# Some Preliminary Results

## Chi-squared Fit Analysis:



#### Conclusions

- In the case of standard physics, the addition of  $\nu_{\tau}$  appearance channel does not improve the sensitivities of any of the neutrino oscillation parameter set by the other two channels already being considered in DUNE.
- We studied the impact of various systematics,  $\nu_{\tau}$  detection efficiencies, experimental reaches (2 different S/B ratios) and the two fluxes on the sensitivities of the oscillation parameters. The performances of the tau optimized flux in the  $\nu_{e}$  appearance and  $\nu_{\mu}$  disappearance channels result in worsening the sensitivities overshadowing the advantage one may get from the increase in the  $\nu_{\tau}$  statistics. This is mainly due to the increased background events in both the  $\nu_{e}$  and  $\nu_{\mu}$  channels.
- In the new physics cases, NSI parameter sensitivities remains less unaffected after the addition of the new channel, except for the coupling  $|\epsilon_{\mu\tau}|$  for which improved limits (about 15% better) was found.
- For the sterile neutrino (3+1) case, the only parameter that shows an increase in sensitivity is the mixing angle  $\theta_{34}$  and we estimated the improvement to be about 20%.
- Neutrino Invisible Decay constant parameter can be constrained using the  $\nu_{ au}$  appearance channel due to a suitable L/E configuration that DUNE provides.

#### **Future Directions**

- Study involving shared run-time between Standard and Optimized fluxes so as to maximize the tau channel capabilities.
- Combining electronic and hadronic channels of tau decay so as to maximize the tau detection efficiency and consequently increase in tau-statistics.
- $\nu_{\mu} 
  ightarrow \nu_{ au}$  maybe suited to study Large Extra Dimension scenarios.
- $\nu_{\mu} \rightarrow \nu_{\tau}$  maybe suited to study dark matter scenarios especially searches in dark sectorinvolving  $L_{\mu} L_{\tau}$  symmetries and its corresponding mediators.
- Probe of Non-Unitary and Lorentz Violating Operators using  $\nu_{\tau}$  –appearance channel.
- · Other suggestions are welcome.

Stay tuned. Work in Progress !!

#### **Essential References**

- arxiv 1811.05487
- arxiv 1512.06148
- arxiv 1606.09550
- arxiv 0407333
- ICARUS: http://cds.cern.ch/record/574836/files/spsc-p-323.pdf
- arxiv 0110393
- arxiv 0402175
- arxiv 0705.0107
- arxiv 1209.2710
- arxiv 010317
- arxiv 1603.08696
- arxiv 1805.01747
- arxiv 1811.00095
- arxiv 1904.07265
- http://home.fnal.gov/ljf26/DUNEFluxes

# Thank You



|                      | Standard Flux |                  | Optimized Flux |                  |  |
|----------------------|---------------|------------------|----------------|------------------|--|
|                      | $\nu$ mode    | $\bar{\nu}$ mode | $\nu$ mode     | $\bar{\nu}$ mode |  |
| $\nu_{\mu}$ CC       | 30175         | 3225             | 85523          | 4933             |  |
| $\bar{\nu}_{\mu}$ CC | 1025          | 9879             | 1256           | 26221            |  |
| $\nu_e$ CC           | 371           | 136              | 856            | 258              |  |
| $\bar{\nu}_e$ CC     | 44            | 109              | 84             | 215              |  |

|                   | signal                                                                               | b                 | ackgrou         | $_{ m nds}$      |      |
|-------------------|--------------------------------------------------------------------------------------|-------------------|-----------------|------------------|------|
|                   |                                                                                      | intrinsic $\nu_e$ | mis $\nu_{\mu}$ | mis $\nu_{\tau}$ | NC   |
|                   | $\nu_{\mu} \rightarrow \nu_{e} \oplus \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$     |                   |                 |                  |      |
| neutrino mode     | $1188 \oplus 11.5$                                                                   | 288.2             | 3.1             | 19.9             | 26   |
|                   | $\nu_{\mu} \rightarrow \nu_{\mu} \oplus \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}$ |                   |                 |                  |      |
|                   | $7601 \oplus 519.2$                                                                  |                   |                 | 28.2             | 75.3 |
|                   | $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \oplus \nu_{\mu} \rightarrow \nu_{e}$     |                   |                 |                  |      |
| antineutrino mode | $209 \oplus 64$                                                                      | 171.8             | 2.9             | 13.4             | 15.2 |
|                   | $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu} \oplus \nu_{\mu} \rightarrow \nu_{\mu}$ |                   |                 |                  |      |
|                   | $2591 \oplus 1489$                                                                   |                   |                 | 16.5             | 44.1 |

| $\nu_e$ appearance channel        |                                                                    |          |  |
|-----------------------------------|--------------------------------------------------------------------|----------|--|
| Signal                            | $\nu_e$ and $\bar{\nu}_e$ CC events from $\nu_\mu$ oscillations 2% |          |  |
|                                   | Beam $\nu_e$ and $\bar{\nu}_e$ CC events                           | 5%  sys  |  |
| Backgrounds                       | Misidentified $\nu_{\mu}$ and $\bar{\nu}_{\mu}$ CC events          | 5% sys   |  |
| Dackgrounds                       | Misidentified $\nu_{\tau}$ and $\bar{\nu}_{\tau}$ CC events        | 20%  sys |  |
|                                   | Misidentified NC events                                            | 10%  sys |  |
| $\nu_{\mu}$ disappearance channel |                                                                    |          |  |
| Signal                            | $\nu_{\mu}$ and $\bar{\nu}_{\mu}$ CC events                        | 5% sys   |  |
| Backgrounds                       | Misidentified $\nu_{\tau}$ and $\bar{\nu}_{\tau}$ CC events        | 20%  sys |  |
|                                   | Misidentified NC events                                            | 10% sys  |  |



| Limits         |
|----------------|
| (-0.2, 0.45)   |
| < 0.1          |
| < 0.3          |
| (-0.02, 0.175) |
| < 0.03         |
|                |