Non-Standard Interactions in Radiative Neutrino Mass Models

Sudip Jana

Max-Planck-Institut für Kernphysik

Neutrino Platform Week 2019 CERN, Geneva, Switzerland

Talk based on:

- K.S. Babu, Bhupal Dev, SJ, Anil Thapa, arXiv:1907.09498
- K.S. Babu, Bhupal Dev, SJ, Yicong Sui, arXiv:1908.02779
- SJ, Ernest Ma, Vishnu P.K., Saikh Saad, arXiv:1910.xxxxx
- K.S. Babu, Dorival Gonçalves, SJ, Pedro Machado, arXiv:1910.xxxxx

[Non-Standard Neutrino Interaction](#page-2-0)

- [Leptoquark Model](#page-2-0)
- [Summary of various models](#page-2-0)

ν mass generation

 $\hat{\mathcal{C}}$ Neutrino Masses and Mixings $>$ New physics beyond SM

ν mass generation

- ❖ "Technically natural" in t'Hooft sense. Small values are protected by symmetry. At a cut-off scale Λ : " natural" - $\delta m_f \sim g^2/(16\pi^2) m_f \ln(\Lambda^2/m_f^2)$ "unnatural" - $\delta m_{\rm H}^2$ ~ - $v_{\rm t}^2/(8\pi^2)$ Λ^2
	- Two ways to generate small values naturally : ٠
- \div Suppression by integrating out heavy states: the higher dimension $1/\Lambda^n$, the lower Λ can be.
- \div Suppression by loop radiative generation: the higher loops $1/(16\pi^2)^n$, the lower cut off scale can be.

Radiative ν mass generation

- Neutrino masses are zero at tree level as SM: $ν_R$ may be absent.
- Small, finite Majorana masses are generated at the quantum level.
- Typically new heavy scalar fields introduced violates lepton number, gives rise to neutrino flavor transitions, and lepton flavor violation.
- Simple realization is the Zee Model, which has a second Higgs doublet and a charged singlet.

- Smallness of neutrino mass is explained via loop and chiral suppression.
- New physics in this framework may lie at the TeV scale.

Type I radiative mechanism

- Obtained from effective d = 7, 9, 11... operators with ∆*L* = 2 selection rule
- If the loop diagram has at least one Standard Model particle, this can be cut to generate such effective operators

Classification: Babu, Leung (2001) Cai, Herrero-Gracia, Schmidt, Vicente, Volkas (2017)

Type II radiative mechanism

- No Standard Model particle inside the loop
- Cannot be cut to generate $d = 7, 9,...$ operators
- Scotogenic model is an expample

- Neutrino mass has no chiral suppression; new scale can be large
- Other considerations (dark matter) require TeV scale new phyiscs

Ma (2006)

Nonstandard neutrino interactions

- New physics near TeV scale can generate nonstandard neutrino interactions (NSI)
- NSI effects happen in the neutrino production, ε^S , propagation through matter, ε^m , and the detection processes, ε^D .
- Most important effect of NSI is in neutrino propagation in matter Wolfenstein (1978)
- Phenomenological, NSI can be described with an effective four ferimion Lagrangian

$$
\mathcal{L}_{\rm NSI} = -2\sqrt{2}G_F \sum_{f,P,\alpha,\beta} \varepsilon_{\alpha\beta}^{f\,P} (\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta})(\bar{f}\gamma_{\mu}Pf)
$$

 $\varepsilon_{\alpha\beta}^{f^P}$ is the parameter that describes the strength of the NSI

Nonstandard neutrino interactions

• Matter potential

$$
H_{\text{mat}} = \sqrt{2} G_F N_e(x) \begin{pmatrix} 1 + \varepsilon_{ee}(x) & \varepsilon_{e\mu}(x) & \varepsilon_{e\tau}(x) \\ \varepsilon_{e\mu}^*(x) & \varepsilon_{\mu\mu}(x) & \varepsilon_{\mu\tau}(x) \\ \varepsilon_{e\tau}^*(x) & \varepsilon_{\mu\tau}^*(x) & \varepsilon_{\tau\tau}(x) \end{pmatrix}
$$

• Note $\varepsilon_{\alpha\beta} \equiv$ real if $\alpha = \beta$

$$
\varepsilon_{\alpha\beta}(x) \equiv \sum_{f=e,u,d} \varepsilon_{\alpha\beta}^f \frac{N_f(x)}{N_e(x)} \qquad \qquad \varepsilon_{\alpha\beta}^f = \varepsilon_{\alpha\beta}^{f,L} + \varepsilon_{\alpha\beta}^{f,R}
$$

$$
N_u = 2N_p + N_n
$$

\n
$$
N_d = N_p + 2N_n
$$

\n
$$
\varepsilon_{\alpha\beta}^e(x) = \varepsilon_{\alpha\beta}^e + \varepsilon_{\alpha\beta}^p + Y_n \varepsilon_{\alpha\beta}^n
$$

\n
$$
\varepsilon_{\alpha\beta}^p(x) = \varepsilon_{\alpha\beta}^e + \varepsilon_{\alpha\beta}^p + Y_n \varepsilon_{\alpha\beta}^n
$$

\n
$$
Y_n(x) = \frac{N_n(x)}{N_p(x)}
$$

Nonstandard neutrino interactions

- These NSI are of great phenomenological interest, as their presence would modify the standard three neutrino oscillation picture.
- The NSI will modify scattering experiments, as the production and detection vertices are corrected; they would also modify neutrino oscillations, primarily through new contributions to matter effects.
- Presence of ε_{ii} affect mass ordering and CP violation Esteban, Gonzalez-Garcia, Maltoni (2019)
- There have been a variety of phenomenological studies of NSI in the context of oscillations, but relatively lesser effort has gone into the ultraviolet (UV) completion of models that yield such NSI.
- A major challenge in generating observable NSI in any UV-complete model is that there are severe constraints arising from charged-lepton flavor violation (cLFV).

Zee Model

- Gauge symmetry is same as Standard Model
- \bullet Zee Model has a second Higgs doublet H_2 and a charged weak singlet η^+ scalars

$$
H_1 = \left(\begin{array}{c} G^+ \\ \frac{1}{\sqrt{2}}(v + H_1^0 + iG^0) \end{array}\right), \qquad H_2 = \left(\begin{array}{c} H_2^+ \\ \frac{1}{\sqrt{2}}(H_2^0 + iA) \end{array}\right)
$$

• The Yukawa lagrangian reads:

$$
\mathcal{L}_Y = f^{ab}(\psi_{aL}^i C \psi_{bL}^j) \epsilon_{ij} \eta^+ + \overline{\psi}_L \tilde{Y} H_1 e_R + \overline{\psi}_L Y H_2 e_R + h.c.
$$

$$
V = \mu H_1^i H_2^j \eta^- + h.c. + \dots
$$

Mixing between η^+ and H_2^+ $_2^+$:

 $\left(\begin{array}{cc} M_2^2 & -\mu v/\sqrt{2} \end{array}\right)$ $-\mu v / \sqrt{2}$ *M*²₃ Δ , $\sin 2\varphi =$ $\sqrt{2}v\mu$ $m_{H^+}^2 - m_{h^+}^2$ where $h^+ = \cos \varphi \eta^+ + \sin \varphi H_2^+$ 2 $H^+ = -\sin\varphi\eta^+ + \cos\varphi H_2^+$ 2

Neutrino masses in the Zee Model

• Yukawa coupling matrices:

$$
f = \begin{pmatrix} 0 & f_{e\mu} & f_{e\tau} \\ -f_{e\mu} & 0 & f_{\mu\tau} \\ -f_{e\tau} & -f_{\mu\tau} & 0 \end{pmatrix}, \qquad Y = \begin{pmatrix} Y_{ee} & Y_{e\mu} & Y_{e\tau} \\ Y_{\mu e} & Y_{\mu\mu} & Y_{\mu\tau} \\ Y_{\tau e} & Y_{\tau\mu} & Y_{\tau\tau} \end{pmatrix}
$$

• Neutrino mass

- If $Y \propto M_l$, which happens with a Z_2 , then model is ruled out Wolfenstein (1980)
- In general, Y is not proportional to M_l , and the model gives reasonable fit to oscillation data
- NSI arises via the exchange of h^{\pm} and H^{\pm}

NSI in Zee Model

The singly-charged scalars η^+ and H_2^+ $\frac{1}{2}$ induce NSI at tree level:

NSI in the Zee Model

- Considering, $y \sim \mathcal{O}(1)$, $m_\tau \sim 1.7$ GeV and $M_\nu \sim \mathcal{O}(10^{-1})$ eV demands $f \sim 10^{-8} \Longrightarrow$ NSI effect from *f* is heavily suppressed
- The effective NSI is:

$$
\varepsilon_{\alpha\beta} = \frac{1}{4\sqrt{2}G_F} Y_{\alpha e} Y_{\beta e}^{\star} \left(\frac{\sin^2 \varphi}{m_{h^+}^2} + \frac{\cos^2 \varphi}{m_{H^+}^2} \right)
$$

• The relevant Yukawas for NSI

$$
\varepsilon_{ee}^m \sim |Y_{ee}|^2 \quad \varepsilon_{e\mu}^m \sim Y_{ee}^* Y_{\mu e}
$$

\n
$$
\varepsilon_{\mu\mu}^m \sim |Y_{\mu e}|^2 \quad \varepsilon_{\mu\tau}^m \sim Y_{\mu e}^* Y_{\tau e}
$$

\n
$$
\varepsilon_{\tau\tau}^m \sim |Y_{\tau e}|^2 \quad \varepsilon_{e\tau}^m \sim Y_{ee}^* Y_{\tau e}
$$

$$
\begin{pmatrix} Y_{ee} & Y_{e\mu} & Y_{e\tau} \\ Y_{\mu e} & Y_{\mu\mu} & Y_{\mu\tau} \\ Y_{\tau e} & Y_{\tau\mu} & Y_{\tau\tau} \end{pmatrix}
$$

• Note: $\varepsilon_{\alpha\alpha} > 0$

Charge Breaking Minima

To have sizable NSI \Rightarrow large mixing $\varphi \Rightarrow$ large μ ($\mu \epsilon_{ij} H_1^i H_2^j$ $i_{2}^{j}\eta^{-}$

• Max. value of μ is found to be 4.1 times the heavier mass m_{H^+}

Bound from EW Precision Constraints

- T parameter imposes the most stringent constraint
- No mixing between the neutral CP-even scalars *h* and *H*

For $m_H = 0.7$ TeV and $m_h^+ = 100$ GeV, the maximum mixing is 0.63.

Bound from EW Precision Constraints

- T parameter imposes the most stringent constraint
- No mixing between the neutral CP-even scalars *h* and *H*

For $m_H = 0.7$ TeV and $m_h^+ = 100$ GeV, the maximum mixing is 0.63.

Lepton Flavor Violation

- Detection of LFV signals \Rightarrow clear evidence for BSM
- Safely ignore cLFV processes involving the $f_{\alpha\beta}$ ($\sim 10^{-8}$) couplings
- $\bullet \ell_i \rightarrow \ell_i \gamma$ arises at one loop level

Contd.

• The presence of the second Higgs doublet gives rise to tree-level trilepton decays $\ell_i \rightarrow \ell_i \ell_k \ell_l$

• Trilepton decays put more stringent bounds compared to the bounds from loop-level $\ell_{\alpha} \to \ell_{\beta} \gamma$ decays.

Collider Constraints on Neutral Scalar Mass

- At LEP experiment, e^+e^- collision above the Z boson mass imposes significant constraints on contact interactions involving e^+e^- and fermion pair.
- An effective Lagrangian has the form:

$$
\mathcal{L}_{\text{eff}} = \frac{4\pi}{\Lambda^2 (1 + \delta_{\text{ef}})} \sum_{i,j=L,R} \eta_{ij}^f (\bar{e}_i \gamma^\mu e_i) (\bar{f}_j \gamma_\mu f_j)
$$

• In Zee model, the exchange of neutral scalars *H* & *A* from second doublet will affect $e^+e^- \to \ell_\alpha^+ \ell_\beta^$ β

Collider constraints on h^{\pm} mass

- New Physics at sub-TeV scale is highly constrained from direct searches as well as indirect searches.
- Direct searches: we can put bound on $h⁺$ mass by looking at the final state (leptons + missing energy)
	- Some supersymmetirc searches (Stau, Selectron) exactly mimics the charged higgs searches.

Dominant production in LEP

Dominant production in LHC

Constraints on Light Charged Scalar

• $BR_{\tau\nu}$ + $BR_{e\nu}$ = 1 ($BR_{\mu\nu}$ \approx 0) to avoid stringent limit from muon decay.

• The lowest charged higgs mass allowed is 110 GeV.

Contd.

 Y_{ee} sin $\varphi = 0 \Rightarrow$ no h^+ production with *W* boson \Rightarrow

• The lowest charged higgs mass allowed is 96 GeV.

Constraints from Higgs Precision data

- Light charged scalar is leptophilic \Rightarrow production rate not affected
- New contribution to loop-induced $h \to \gamma \gamma$

Numerical results for NSI

 $\varepsilon_{ee}^{\text{max}} \approx 3\%$ *ε*

Contd.

 $\varepsilon_{\tau\tau}^{\rm max} \approx 9.3\%$

Contd.

 $\varepsilon_{\mu\tau}^{\rm max} \approx 2.5\%$ ε

 $_{e\tau}^{\text{max}} \approx 2.5\%$

Consistency with Neutrino Oscillation Data

$$
\left(\begin{array}{ccc} Y_{ee} & 0 & Y_{e\tau} \\ 0 & Y_{\mu\mu} & Y_{\mu\tau} \\ 0 & Y_{\tau\mu} & Y_{\tau\tau} \end{array}\right), \left(\begin{array}{ccc} 0 & Y_{e\mu} & Y_{e\tau} \\ Y_{\mu e} & 0 & Y_{\mu\tau} \\ 0 & Y_{\tau\mu} & Y_{\tau\tau} \end{array}\right), \left(\begin{array}{ccc} Y_{ee} & 0 & Y_{e\tau} \\ 0 & Y_{\mu\mu} & Y_{\mu\tau} \\ Y_{\tau e} & 0 & Y_{\tau\tau} \end{array}\right)
$$
 BPI I BPI I

Contd.

Zee-burst: Glashow like Signature

Zee-burst: Glashow like Spectrum

NSI in Zee-Babu Model

- Two $SU(2)_L$ singlet Higgs fields, h^+ and k^{++} are introduced
- The corresponding Lagrangina reads:

 $\mathcal{L} = \mathcal{L}_{SM} + f_{ab} \Psi_{aL}^C \Psi_{bL} h^+ + h_{ab} l_{aR}^C l_{bR} k^{++} - \mu h^- h^- k^{++} + h.c. + \nabla_H$

• Majorana neutrino masses are generated by 2-loop diagram:

$$
M_{\nu} \approx \frac{1}{(16\pi^2)^2} \frac{8\mu}{M^2} f_{ac} \tilde{h}_{cd} m_c m_d (f^{\dagger})_{db} \tilde{I}(\frac{m_k^2}{m_h^2})
$$

NSI in Zee-Babu Model

The heavy singly charged scalar induces nonstandard neutrino interactions:

T. Ohlsson et al. (2009)

NSI in KNT Model

Singlet fermion N and two singlet scalars η_1^+ n_1^+ and n_2^+ $\frac{1}{2}$ are introduced

$$
\mathcal{L}_Y = f LL \eta_1^+ + g e^c N \eta_2^- + \frac{1}{2} M_N NN
$$

- η_2^+ $\frac{1}{2}$ and **N** are odd under Z_2
- Majorana neutrino masses are generated via 3-loop diagram

Only NSI is from η_1^+ 1

NSI in Leptoquark: Colored Zee Model

Two *SU*(3)_{*C*} scalar fields, $\Omega \sim (3, 2, 1/6)$ and $\chi^{-1/3} \sim (3, 1, -1/3)$, are introduced

$$
\Omega = \begin{pmatrix} \omega^{2/3} \\ \omega^{-1/3} \end{pmatrix} \qquad \qquad \chi^{-1/3}
$$

• The Yukawa lagrangian reads:

 $\mathcal{L}_Y = y_{ij}L_id_j^c\Omega + y_{ij}^{\prime}L_iQ_j\chi^* + h.c.$ $V = \mu \Omega \chi^* H^{\dagger} + h.c.$

Mixing between $\omega^{-1/3}$ and $\chi^{-1/3}$:

$$
\begin{pmatrix} M_{\omega}^2 & \mu \text{v} \\ \mu \text{v} & M_{\chi}^{-1/3} \end{pmatrix}
$$

NSI in Leptoquark: Colored Zee Model

• Neutrino masses:

 d_k^c c k ν_i ν_j d_l^c ç l $\omega^{-1/3}$ $y \sim \mathcal{O}(1)$

2-loop Leptoquark Model

Same as before as it assumes $\Omega \sim (3, 2, 1/6)$ and $\chi^{-1/3} \sim (3, 1, -1/3)$ $\chi^{-1/3}$ coupling is modified

$$
\mathcal{L}_y = Y_{ij} L_i d_j^c \Omega + F_{ij} e_i^c u_j^c \chi^{-1/3} + h.c.
$$

- Note F_{ii} do not lead to NSI.
- M_{ν} arises at 2-loops: Replace leptons by quarks in Zee-Babu Model

KNT Leptoquark Model

• Replace leptons by quarks

$$
\mathcal{L}_y = fLQ\chi_1^{*1/3} + d^cN\chi_2^{-1/3} + \frac{1}{2}M_NNN
$$

 $\chi_1^{-1/3}$ $\frac{-1}{1}$ cause NSI.

Collider constraints on Leptoquarks

Feynman diagrams for pair- and single-production of LQ at the LHC:

Constraints on Leptoquarks

Numerical results for Leptoquark Colored Zee Model

• Constraints on Yukawa y_{0i}

\n- $$
\mu \to e\gamma
$$
: No significant constraints due to cancellations. This suppresses amplitude by $\frac{m_b^2}{m_{\omega}^2} << 1$
\n- $\mu \to 3e$ $|y_{13}y_{23}| < 7.6 \times 10^{-3}$ $M_{\omega} = 1 \, \text{TeV}$
\n

 \bullet $\mu - e$ conversion

$$
|y_{11}y_{21}| < 3.3 \times 10^{-7} \qquad M_{\omega} = 1 \text{TeV}
$$

•
$$
\tau^- \to e^- \eta
$$
 and $\tau^- \to \mu^- \eta$

$$
|y_{12}y_{32}| < 1.2 \times 10^{-2} (\frac{M_{\omega}}{300 GeV})^2
$$
 $|y_{22}y_{32}| < 1.0 \times 10^{-2} (\frac{M_{\omega}}{300 GeV})^2$

Contd.

• Atomic Parity Violation constraints:

$$
y_{11} < 0.03 \frac{M_{\omega}^{2/3}}{100 GeV} \qquad \qquad y_{11}' < 0.03 \frac{M_{\chi}}{100 GeV}
$$

• ϵ_{ee} , $\epsilon_{e\mu}$, and $\epsilon_{e\tau}$ cannot be too large as one y_{e1} factor is order 0.3 for 1 TeV Leptoquark mass

$$
\varepsilon_{ee} \approx 0.33\%
$$
 $\varepsilon_{e\mu} = 10^{-7}\%$ $\varepsilon_{e\tau} = 0.36\%$
 $\varepsilon_{\mu\mu} = 21.6\%$ $\varepsilon_{\mu\tau} \approx 0.43\%$ $\varepsilon_{\tau\tau} \approx 34.3\%$

Numerical results for NSI (Doublet)

Contd.

Numerical results for NSI (Doublet)

Contd.

Summary of Maximum NSI

Summary of type-I Models

Conclusion

- Matter NSI in the radiative mass models has been studied.
- Mass as low as 96 GeV for the charged scalar is shown to be consistent with direct and indirect limits from LEP and LHC.
- Diagonal NSI in Zee Model are allowed to be as large as $(8\%$, 3.8 $\%$, 9.3 %) for $(\varepsilon_{ee}, \varepsilon_{uu}, \varepsilon_{\tau\tau})$, while off-diagonal NSIs are allowed to be (-, 0.56% , 0.34% for $(\varepsilon_{eu}, \varepsilon_{e\tau}, \varepsilon_{u\tau})$.
- NSI in leptoquark models are studied which allows diagonal NSI $\varepsilon_{\tau\tau}$ as large as 34.3%
- Radiative neutrino mass model allows parameters which are in good agreement with the neutrino oscillation experiments

Thank You

Dune Projected Limits

