Non-Standard Interactions in Radiative Neutrino Mass Models

Sudip Jana

Max-Planck-Institut für Kernphysik

Neutrino Platform Week 2019 CERN, Geneva, Switzerland

Talk based on:

- K.S. Babu, Bhupal Dev, SJ, Anil Thapa, arXiv:1907.09498
- K.S. Babu, Bhupal Dev, SJ, Yicong Sui, arXiv:1908.02779
- SJ, Ernest Ma, Vishnu P.K., Saikh Saad, arXiv:1910.xxxxx
- K.S. Babu, Dorival Gonçalves, SJ, Pedro Machado, arXiv:1910.xxxxx

- 2 Non-Standard Neutrino Interaction
- 3 Zee Model
- 4 Leptoquark Model
- **5** Summary of various models

ν mass generation

Neutrino Masses and Mixings > New physics beyond SM

ν mass generation

- $\label{eq:starses} \begin{array}{l} & \text{``Technically natural'' in t'Hooft sense. Small values are} \\ & \text{protected by symmetry. At a cut-off scale } \land : \\ & \text{``natural'' } \delta m_f \sim g^2 / (16\pi^2) \ m_f \ln(\Lambda^2 / m_f^2) \\ & \text{``unnatural'' } \delta m_H^2 \sim \ y_t^2 / (8\pi^2) \ \Lambda^2 \end{array}$
 - Two ways to generate small values naturally :
- Suppression by integrating out heavy states: the higher dimension $1/\Lambda^n$, the lower Λ can be.
- Suppression by loop radiative generation: the higher loops $1/(16\pi^2)^n$, the lower cut off scale can be.

Radiative ν mass generation

- Neutrino masses are zero at tree level as SM: ν_R may be absent.
- Small, finite Majorana masses are generated at the quantum level.
- Typically new heavy scalar fields introduced violates lepton number, gives rise to neutrino flavor transitions, and lepton flavor violation.
- Simple realization is the Zee Model, which has a second Higgs doublet and a charged singlet.

- Smallness of neutrino mass is explained via loop and chiral suppression.
- New physics in this framework may lie at the TeV scale.

Type I radiative mechanism

- Obtained from effective d = 7, 9, 11... operators with $\Delta L = 2$ selection rule
- If the loop diagram has at least one Standard Model particle, this can be cut to generate such effective operators

Classification: Babu, Leung (2001)

Cai, Herrero-Gracia, Schmidt, Vicente, Volkas (2017)

Type II radiative mechanism

- No Standard Model particle inside the loop
- Cannot be cut to generate d = 7, 9,... operators
- Scotogenic model is an expample

- Neutrino mass has no chiral suppression; new scale can be large
- Other considerations (dark matter) require TeV scale new phyiscs

Ma (2006)

Nonstandard neutrino interactions

- New physics near TeV scale can generate nonstandard neutrino interactions (NSI)
- NSI effects happen in the neutrino production, ε^S, propagation through matter, ε^m, and the detection processes, ε^D.
- Most important effect of NSI is in neutrino propagation in matter Wolfenstein (1978)
- Phenomenological, NSI can be described with an effective four ferimion Lagrangian

$$\mathcal{L}_{\text{NSI}} = -2\sqrt{2}G_F \sum_{f,P,\alpha,\beta} \varepsilon_{\alpha\beta}^{f\,P} (\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta}) (\bar{f}\gamma_{\mu}Pf)$$

 $\varepsilon_{\alpha\beta}^{f\,P}$ is the parameter that describes the strength of the NSI

Nonstandard neutrino interactions

• Matter potential

$$H_{\text{mat}} = \sqrt{2}G_F N_e(x) \begin{pmatrix} 1 + \varepsilon_{ee}(x) & \varepsilon_{e\mu}(x) & \varepsilon_{e\tau}(x) \\ \varepsilon_{e\mu}^*(x) & \varepsilon_{\mu\mu}(x) & \varepsilon_{\mu\tau}(x) \\ \varepsilon_{e\tau}^*(x) & \varepsilon_{\mu\tau}^*(x) & \varepsilon_{\tau\tau}(x) \end{pmatrix}$$

• Note $\varepsilon_{\alpha\beta} \equiv \text{real if } \alpha = \beta$

$$\varepsilon_{\alpha\beta}(x) \equiv \sum_{f=e,u,d} \varepsilon_{\alpha\beta}^f \frac{N_f(x)}{N_e(x)} \qquad \qquad \varepsilon_{\alpha\beta}^f = \varepsilon_{\alpha\beta}^{f,L} + \varepsilon_{\alpha\beta}^{f,R}$$

$$\begin{array}{ccc} N_{u} = 2N_{p} + N_{n} & N_{d} = N_{p} + 2N_{n} \\ N_{p} = N_{e} \\ \varepsilon^{p}_{\alpha\beta} = 2\varepsilon^{u}_{\alpha\beta} + \varepsilon^{d}_{\alpha\beta} & \varepsilon^{n}_{\alpha\beta} = \varepsilon^{u}_{\alpha\beta} + 2\varepsilon^{d}_{\alpha\beta} \end{array} \xrightarrow{\varepsilon_{\alpha\beta}(x)} \varepsilon^{e}_{\alpha\beta} + \varepsilon^{p}_{\alpha\beta} + Y_{n}\varepsilon^{n}_{\alpha\beta} \\ \xrightarrow{\varepsilon_{\alpha\beta}(x)} Y_{n}(x) = \frac{N_{n}(x)}{N_{p}(x)} \end{array}$$

Nonstandard neutrino interactions

- These NSI are of great phenomenological interest, as their presence would modify the standard three neutrino oscillation picture.
- The NSI will modify scattering experiments, as the production and detection vertices are corrected; they would also modify neutrino oscillations, primarily through new contributions to matter effects.
- Presence of ε_{ij} affect mass ordering and CP violation Esteban, Gonzalez-Garcia, Maltoni (2019)
- There have been a variety of phenomenological studies of NSI in the context of oscillations, but relatively lesser effort has gone into the ultraviolet (UV) completion of models that yield such NSI.
- A major challenge in generating observable NSI in any UV-complete model is that there are severe constraints arising from charged-lepton flavor violation (cLFV).

Zee Model

- Gauge symmetry is same as Standard Model
- Zee Model has a second Higgs doublet H_2 and a charged weak singlet η^+ scalars

$$H_{1} = \begin{pmatrix} G^{+} \\ \frac{1}{\sqrt{2}}(\mathbf{v} + H_{1}^{0} + iG^{0}) \end{pmatrix}, \qquad H_{2} = \begin{pmatrix} H_{2}^{+} \\ \frac{1}{\sqrt{2}}(H_{2}^{0} + iA) \end{pmatrix}$$

• The Yukawa lagrangian reads:

$$\mathcal{L}_{Y} = f^{ab}(\psi_{aL}^{i} C \psi_{bL}^{j}) \epsilon_{ij} \eta^{+} + \overline{\psi}_{L} \tilde{Y} H_{1} e_{R} + \overline{\psi}_{L} Y H_{2} e_{R} + h.c.$$
$$V = \mu H_{1}^{i} H_{2}^{j} \eta^{-} + h.c. + \dots$$

• Mixing between η^+ and H_2^+ :

 $\begin{pmatrix} M_2^2 & -\mu \mathbf{v}/\sqrt{2} \\ -\mu \mathbf{v}/\sqrt{2} & M_3^2 \end{pmatrix}, \qquad \sin 2\varphi = \frac{\sqrt{2}\mathbf{v}\mu}{m_{H^+}^2 - m_{h^+}^2}$ where $h^+ = \cos \varphi \eta^+ + \sin \varphi H_2^+$ $H^+ = -\sin \varphi \eta^+ + \cos \varphi H_2^+$

Neutrino masses in the Zee Model

• Yukawa coupling matrices:

$$f = \begin{pmatrix} 0 & f_{e\mu} & f_{e\tau} \\ -f_{e\mu} & 0 & f_{\mu\tau} \\ -f_{e\tau} & -f_{\mu\tau} & 0 \end{pmatrix}, \qquad Y = \begin{pmatrix} Y_{ee} & Y_{e\mu} & Y_{e\tau} \\ Y_{\mu e} & Y_{\mu\mu} & Y_{\mu\tau} \\ Y_{\tau e} & Y_{\tau\mu} & Y_{\tau\tau} \end{pmatrix}$$

• Neutrino mass

• If $Y \propto M_l$, which happens with a Z_2 , then model is ruled out Wolfenstein (1980)

- In general, Y is not proportional to M_l , and the model gives reasonable fit to oscillation data
- NSI arises via the exchange of h^{\pm} and H^{\pm}

NSI in Zee Model

• The singly-charged scalars η^+ and H_2^+ induce NSI at tree level:

NSI in the Zee Model

- Considering, $y \sim \mathcal{O}(1)$, $m_{\tau} \sim 1.7$ GeV and $M_{\nu} \sim \mathcal{O}(10^{-1})$ eV demands $f \sim 10^{-8} \Longrightarrow$ NSI effect from f is heavily suppressed
- The effective NSI is:

$$arepsilon_{lphaeta}= \; rac{1}{4\sqrt{2}G_F}Y_{lpha e}Y^{\star}_{eta e}\left(rac{\sin^2arphi}{m^2_{h^+}}+rac{\cos^2arphi}{m^2_{H^+}}
ight)$$

• The relevant Yukawas for NSI:

$$\begin{array}{ll} \varepsilon^m_{ee} \sim |Y_{ee}|^2 & \varepsilon^m_{e\mu} \sim Y^*_{ee} Y_{\mu e} \\ \varepsilon^m_{\mu\mu} \sim |Y_{\mu e}|^2 & \varepsilon^m_{\mu\tau} \sim Y^*_{\mu e} Y_{\tau e} \\ \varepsilon^m_{\tau\tau} \sim |Y_{\tau e}|^2 & \varepsilon^m_{e\tau} \sim Y^*_{ee} Y_{\tau e} \end{array}$$

$$\begin{pmatrix} Y_{ee} & Y_{e\mu} & Y_{e\tau} \\ Y_{\mu e} & Y_{\mu \mu} & Y_{\mu \tau} \\ Y_{\tau e} & Y_{\tau \mu} & Y_{\tau \tau} \end{pmatrix}$$

• Note: $\varepsilon_{\alpha\alpha} > 0$

Charge Breaking Minima

• To have sizable NSI \Rightarrow large mixing $\varphi \Rightarrow$ large $\mu (\mu \epsilon_{ij} H_1^i H_2^j \eta^-)$

• Max. value of μ is found to be 4.1 times the heavier mass m_{H^+}

Bound from EW Precision Constraints

- T parameter imposes the most stringent constraint
- No mixing between the neutral CP-even scalars h and H

• For $m_H = 0.7 \text{ TeV}$ and $m_h^+ = 100 \text{ GeV}$, the maximum mixing is 0.63.

Bound from EW Precision Constraints

- T parameter imposes the most stringent constraint
- No mixing between the neutral CP-even scalars h and H

• For $m_H = 0.7 \text{ TeV}$ and $m_h^+ = 100 \text{ GeV}$, the maximum mixing is 0.63.

Lepton Flavor Violation

- Detection of LFV signals \implies clear evidence for BSM
- Safely ignore cLFV processes involving the $f_{\alpha\beta}$ (~ 10⁻⁸) couplings
- $\ell_i \rightarrow \ell_j \gamma$ arises at one loop level

Process	Exp. bound	Constraint
$\mu \to e \gamma$	BR < 4.2×10^{-13}	$ Y_{\mu e}^{\star}Y_{ee} < 1.05 \times 10^{-3} \left(\frac{m_H}{700 \text{ GeV}}\right)^2$
$\tau \to e \gamma$	BR < 3.3×10^{-8}	$ Y_{ au e}^{\star}Y_{ee} < 0.69 \left(rac{m_{H}}{700 { m GeV}} ight)^{2}$
$\tau \to \mu \gamma$	BR < 4.4×10^{-8}	$\left Y_{\tau e}^{\star} Y_{\mu e} \right < 0.79 \left(\frac{m_H}{700 \text{ GeV}} \right)^2$

Contd.

• The presence of the second Higgs doublet gives rise to tree-level trilepton decays $\ell_i \rightarrow \ell_j \ell_k \ell_l$

Process	Exp. bound	Constraint
$\mu^- ightarrow e^+ e^- e^-$	BR < 1.0×10^{-12}	$ Y_{\mu e}^{\star}Y_{ee} < 3.28 \times 10^{-5} \left(\frac{m_H}{700 \text{ GeV}}\right)^2$
$ au^- ightarrow e^+ e^- e^-$	BR < 1.4×10^{-8}	$ Y_{\tau e}^{\star}Y_{ee} < 9.05 \times 10^{-3} \left(\frac{m_H}{700 \text{ GeV}}\right)^2$
$ au^- ightarrow e^+ e^- \mu^-$	BR < 1.1×10^{-8}	$ Y_{\tau e}^{\star}Y_{\mu e} < 5.68 \times 10^{-3} \left(\frac{m_H}{700 \text{ GeV}}\right)^2$

• Trilepton decays put more stringent bounds compared to the bounds from loop-level $\ell_{\alpha} \rightarrow \ell_{\beta} \gamma$ decays.

Collider Constraints on Neutral Scalar Mass

- At LEP experiment, e^+e^- collision above the Z boson mass imposes significant constraints on contact interactions involving e^+e^- and fermion pair.
- An effective Lagrangian has the form:

$$\mathcal{L}_{eff} = \frac{4\pi}{\Lambda^2 (1 + \delta_{ef})} \sum_{i,j=L,R} \eta^f_{ij} (\bar{e}_i \gamma^\mu e_i) (\bar{f}_j \gamma_\mu f_j)$$

• In Zee model, the exchange of neutral scalars *H* & *A* from second doublet will affect $e^+e^- \rightarrow \ell^+_{\alpha}\ell^-_{\beta}$

Process	LEP bound	Constraint
$e^+e^- ightarrow e^+e^-$	$\Lambda^{LR/RL} > 10~{ m TeV}$	$\frac{m_H}{ Y_{ee} } > 1.99 \text{ TeV}$
$e^+e^- ightarrow \mu^+\mu^-$	$\Lambda^{LR/RL} > 7.9~{\rm TeV}$	$\frac{m_{H}^{2}}{ Y_{\mu e} } > 1.58 \text{ TeV}$
$e^+e^- o au^+ au^-$	$\Lambda^{L\!R/RL}>2.2~{\rm TeV}$	$\frac{m_H^{\alpha c}}{ Y_{\tau e} } > 0.44 \text{ TeV}$

Collider constraints on h^{\pm} **mass**

- New Physics at sub-TeV scale is highly constrained from direct searches as well as indirect searches.
- Direct searches: we can put bound on *h*⁺ mass by looking at the final state (leptons + missing energy)
 - Some supersymmetirc searches (Stau, Selectron) exactly mimics the charged higgs searches.

Dominant production in LEP

Dominant production in LHC

Constraints on Light Charged Scalar

• $BR_{\tau\nu} + BR_{e\nu} = 1$ ($BR_{\mu\nu} \approx 0$) to avoid stringent limit from muon decay.

• The lowest charged higgs mass allowed is 110 GeV.

Contd.

• $Y_{ee} \sin \varphi = 0 \Rightarrow \text{no } h^+ \text{ production with } W \text{ boson} \Rightarrow$

• The lowest charged higgs mass allowed is 96 GeV.

Constraints from Higgs Precision data

- Light charged scalar is leptophilic \Rightarrow production rate not affected
- New contribution to loop-induced $h \rightarrow \gamma \gamma$

Numerical results for NSI

 $\varepsilon_{ee}^{\max} \approx 3\%$

Contd.

 $\varepsilon_{\tau\tau}^{\rm max} \approx 9.3\%$

Contd.

 $\varepsilon_{\mu\tau}^{\rm max} \approx 2.5\%$

 $\varepsilon_{e\tau}^{\rm max} \approx 2.5\%$

Consistency with Neutrino Oscillation Data

$$\begin{pmatrix} Y_{ee} & 0 & Y_{e\tau} \\ 0 & Y_{\mu\mu} & Y_{\mu\tau} \\ 0 & Y_{\tau\mu} & Y_{\tau\tau} \end{pmatrix}, \begin{pmatrix} 0 & Y_{e\mu} & Y_{e\tau} \\ Y_{\mu e} & 0 & Y_{\mu\tau} \\ 0 & Y_{\tau\mu} & Y_{\tau\tau} \end{pmatrix}, \begin{pmatrix} Y_{ee} & 0 & Y_{e\tau} \\ 0 & Y_{\mu\mu} & Y_{\mu\tau} \\ Y_{\tau e} & 0 & Y_{\tau\tau} \end{pmatrix}$$
BPI BPII BPII

Oscillation	3σ allowed range	Model prediction			
parameters	from NuFit4	BP I (IH)	BP II (IH)	BP III (NH)	
$\Delta m_{21}^2 (10^{-5} \mathrm{eV}^2)$	6.79 - 8.01	7.388	7.392	7.390	
$\Delta m_{23}^2 (10^{-3} \mathrm{eV}^2) (\mathrm{IH})$	2.412 - 2.611	2.541	2.488	-	
$\Delta m_{31}^2 (10^{-3} \text{ eV}^2) (\text{NH})$	2.427 - 2.625	-	-	2.505	
$\sin^2 \theta_{12}$	0.275 - 0.350	0.295	0.334	0.316	
$\sin^2 \theta_{23}$ (IH)	0.423 - 0.629	0.614	0.467	-	
$\sin^2 \theta_{23}$ (NH)	0.418 - 0.627	-	-	0.577	
$\sin^2 \theta_{13}$ (IH)	0.02068 - 0.02463	0.0219	0.0232	-	
$\sin^2 \theta_{13}(\text{NH})$	0.02045 - 0.02439	-	-	0.0229	

Contd.

Sudip Jana (MPIK)

Zee-burst: Glashow like Signature

Zee-burst: Glashow like Spectrum

NSI in Zee-Babu Model

- Two $SU(2)_L$ singlet Higgs fields, h^+ and k^{++} are introduced
- The corresponding Lagrangina reads:

 $\mathcal{L} = \mathcal{L}_{SM} + f_{ab} \overline{\Psi_{aL}^C} \Psi_{bL} h^+ + h_{ab} \overline{l_{aR}^C} l_{bR} k^{++} - \mu h^- h^- k^{++} + h.c. + \nabla_H$

• Majorana neutrino masses are generated by 2-loop diagram:

$$M_{
u} pprox rac{1}{(16\pi^2)^2} rac{8\mu}{M^2} f_{ac} \, ilde{h}_{cd} \, m_c \, m_d \, (f^\dagger)_{db} \, ilde{I}(rac{m_k^2}{m_h^2})$$

NSI in Zee-Babu Model

The heavy singly charged scalar induces nonstandard neutrino interactions:

T. Ohlsson et al. (2009)

NSI in KNT Model

• Singlet fermion N and two singlet scalars η_1^+ and η_2^+ are introduced

$$\mathcal{L}_Y = f LL\eta_1^+ + g e^c N \eta_2^- + \frac{1}{2} M_N NN$$

- η_2^+ and N are odd under Z_2
- Majorana neutrino masses are generated via 3-loop diagram

• Only NSI is from η_1^+

NSI in Leptoquark: Colored Zee Model

• Two $SU(3)_C$ scalar fields, $\Omega \sim (3, 2, 1/6)$ and $\chi^{-1/3} \sim (3, 1, -1/3)$, are introduced

$$\Omega = \begin{pmatrix} \omega^{2/3} \\ \omega^{-1/3} \end{pmatrix} \qquad \qquad \chi^{-1/3}$$

• The Yukawa lagrangian reads:

$$\mathcal{L}_{Y} = y_{ij}L_{i}d_{j}^{c}\Omega + y_{ij}^{\prime}L_{i}Q_{j}\chi^{*} + h.c$$
$$V = \mu\Omega\chi^{*}H^{\dagger} + h.c.$$

• Mixing between $\omega^{-1/3}$ and $\chi^{-1/3}$:

$$\begin{pmatrix} M_{\omega}^2 & \mu \mathrm{v} \ \mu \mathrm{v} & M_{\chi}^{-1/3} \end{pmatrix}$$

NSI in Leptoquark: Colored Zee Model

• Neutrino masses:

• Choosing $y.y' \approx 0 \Longrightarrow y \sim \mathcal{O}(1)$ or $y' \sim \mathcal{O}(1)$

2-loop Leptoquark Model

Same as before as it assumes Ω ~ (3, 2, 1/6) and χ^{-1/3}~ (3, 1, -1/3)
χ^{-1/3} coupling is modified

$$\mathcal{L}_{y} = Y_{ij}L_{i}d_{j}^{c}\Omega + F_{ij}e_{i}^{c}u_{j}^{c}\chi^{-1/3} + h.c.$$

- Note F_{ij} do not lead to NSI.
- M_{ν} arises at 2-loops: Replace leptons by quarks in Zee-Babu Model

KNT Leptoquark Model

• Replace leptons by quarks

$$\mathcal{L}_{y} = fLQ\chi_{1}^{*1/3} + d^{c}N\chi_{2}^{-1/3} + \frac{1}{2}M_{N}NN$$

• $\chi_1^{-1/3}$ cause NSI.

Collider constraints on Leptoquarks

Feynman diagrams for pair- and single-production of LQ at the LHC:

Constraints on Leptoquarks

Numerical results for Leptoquark Colored Zee Model

• Constraints on Yukawa $y_{\alpha i}$

• $\mu - e$ conversion

$$|y_{11}y_{21}| < 3.3 \times 10^{-7}$$
 $M_{\omega} = 1 TeV$

• $\tau^- \rightarrow e^- \eta$ and $\tau^- \rightarrow \mu^- \eta$

$$|y_{12}y_{32}| < 1.2 \times 10^{-2} (\frac{M_{\omega}}{300 GeV})^2$$
 $|y_{22}y_{32}| < 1.0 \times 10^{-2} (\frac{M_{\omega}}{300 GeV})^2$

Contd.

• Atomic Parity Violation constraints:

$$y_{11} < 0.03 \frac{M_{\omega}^{2/3}}{100 GeV}$$
 $y_{11}' < 0.03 \frac{M_{\chi}}{100 GeV}$

ϵ_{ee}, *ϵ_{eµ}*, and *ϵ_{eτ}* cannot be too large as one *y_{e1}* factor is order 0.3 for 1
 TeV Leptoquark mass

$$\varepsilon_{ee} \approx 0.33\% \quad \varepsilon_{e\mu} = 10^{-7}\% \quad \varepsilon_{e\tau} = 0.36\%$$

$$\varepsilon_{\mu\mu} = 21.6\% \quad \varepsilon_{\mu\tau} \approx 0.43\% \quad \varepsilon_{\tau\tau} \approx 34.3\%$$

Numerical results for NSI (Doublet)

Contd.

 $\varepsilon_{\tau\tau}^{\rm max} \approx 34.3\%$

Numerical results for NSI (Doublet)

Contd.

Summary of Maximum NSI

Summary of type-I Models

Term	0	0 Model	Loop S/ New particles		New porticles	Max NSI @ tree-level					
			level	F	new particles	\$cc	εμμ	877	\$eµ	Set	ε _{µτ}
$L\ell^{c}\Phi^{*}$	O_2^2	Zec [14]	1	8	$\eta^+(1, 1, 1), \Phi_2(1, 2, 1/2)$	0.08	0.038	0.093	$O(10^{-5})$	0.0056	0.0034
	\mathcal{O}_9	Zee-Babu [15, 16]	2	8	$h^+(1, 1, 1), k^{++}(1, 1, 2)$						
	0 ₉	KNT [36]	3	S F	$\eta_1^+(1, 1, 1), \eta_2^+(1, 1, 1)$ N(1, 1, 0)	0	0.0009	0.003	0	0	0.003
$LL\eta$	0 ₉	1S-1S-1F [55]	3	S F	$\eta_1(1, 1, 1), \eta_2(1, 1, 3) = F(1, 1, 2)$						
	\mathcal{O}_2^1	1S-2VLL [31]	1	S F	$\eta(1, 1, 1)$ $\Psi(1, 2, -3/2)$						
$L\ell^c \phi^*$	\mathcal{O}_3'	AKS [38]	3	S F	$\Phi_2(1, 2, 1/2), \eta^+(1, 1, 1), \eta^0(1, 1, 0)$ N(1 , 1 , 0)	$O(10^{-10})$	$O(10^{-10})$	$O(10^{-10})$	$O(10^{-10})$	$O(10^{-10})$	$O(10^{-10})$
_	$O_{d=15}$	Cocktail [39]	3	5	$\eta^+(1, 1, 1), k^{++}(1, 1, 2), \Phi_2(1, 2, 1/2)$	0	0	0	0	0	0
W/Z	O'_2	MRIS [43]	1	F	N(1, 1, 0), S(1, 1, 0)	0.0013	$O(10^{-4})$	0.0028	$O(10^{-5})$	$O(10^{-4})$	0.0012
$L\Omega d^c$	05	LQ variant of Zee [30]	1	8	$Ω(3, 2, 1/6), \chi(3, 1, -1/3)$	0.004	0.216	0.343	$O(10^{-7})$	0.0036	0.0043
$(LQ\chi^*)$	O_8^4	2LQ-1LQ [33]	2	s	$\Omega(3, 2, 1/6), \chi(3, 1, -1/3)$	(0.0069)	(0.0086)				
	O_{3}^{3}	2LQ-1VLQ [34]	2	S F	$\Omega(3, 2, 1/6)$ U(3, 1, 2/3)						
$L\Omega d^c$	O_{3}^{6}	2LQ-3VLQ [31]	1	S F	Ω(3, 2, 1/6) Σ(3, 3, 2/3)	0.004	0.093	0.093	O(10 ⁻⁷)	0.0036	0.0043
	O_8^2	2LQ-2VLL [31]	2	S F	$\Omega(3, 2, 1/6)$ $\psi(1, 2, -1/2)$						
	O_8^3	2LQ-2VLQ [31]	2	S F	$\Omega(3, 2, 1/6) \\ \xi(3, 2, 7/6)$						
$L\Omega d^c$ $(LQ\bar{\rho})$	O_{3}^{9}	Triplet-Doublet LQ [31]	1	8	$\rho(3, 3, -1/3), \ \Omega(3, 2, 1/6)$	0.0059	0.0249	0.517	$O(10^{-8})$	0.0050	0.0038
	O11	LQ/DQ variant Zee-Babu [32]	2	5	$\chi(3, 1, -1/3)$, $\Delta(6, 1, -2/3)$						
	0 ₁₁	Angelic [35]	2	S F	$\chi(3, 1, 1/3)$ F(8 , 1 , 0)						
$LQ\chi^*$	O ₁₁	LQ variant of KNT [37]	3	S F	$\chi(3, 1, -1/3), \ \chi_2(3, 1, -1/3) \\ \frac{N(1, 1, 0)}{N(1, 1, 0)}$	0.0069	0.0086	0.093	$O(10^{-7})$	0.0036	0.0043
	O_{3}^{4}	1LQ-2VLQ [31]	1	S F	$\chi(3, 1, -1/3)$ Q(3 , 2 , -5/6)						
$Lu^c \delta$ $(LQ\bar{\rho})$	$\tilde{\mathcal{O}}_1$	3LQ-2LQ-1LQ (New)	1	s	$\bar{\rho}(\bar{3}, 3, 1/3), \delta(3, 2, 7/6), \xi(3, 1, 2/3)$	0.004 (0.0059)	0.216 (0.007)	0.343 (0.517)	$O(10^{-7})$	0.0036 (0.005)	0.0043 (0.0038)
$Lu^c\delta$	$O_{d=13}$	3LQ-2LQ-2LQ(New)	2	8	$\delta(3, 2, 7/6), \Omega(3, 2, 1/6), \hat{\Delta}(6^*, 3, -1/3)$	0.004	0.216	0.343	$O(10^{-7})$	0.0036	0.0043
LQp	\mathcal{O}_3^5	3LQ-2VLQ [31]	1	S F	$\bar{\rho}(\bar{3}, 3, -1/3)$ Q(3 , 2 , -5/6)	0.0059	0.0007	0.517	$O(10^{-7})$	0.005	0.0038
	All Type-II Radiative models				0	o	o	0	o	0	

Conclusion

- Matter NSI in the radiative mass models has been studied.
- Mass as low as 96 GeV for the charged scalar is shown to be consistent with direct and indirect limits from LEP and LHC.
- Diagonal NSI in Zee Model are allowed to be as large as (8 %, 3.8 %, 9.3 %) for (ε_{ee}, ε_{µµ}, ε_{ττ}), while off-diagonal NSIs are allowed to be (-, 0.56 %, 0.34 %) for (ε_{eµ}, ε_{eτ}, ε_{µτ}).
- NSI in leptoquark models are studied which allows diagonal NSI $\varepsilon_{\tau\tau}$ as large as 34.3%
- Radiative neutrino mass model allows parameters which are in good agreement with the neutrino oscillation experiments

Thank You

Dune Projected Limits

NSI Parameter	300 Kt.MW.yr bound ($\leq 90\%$)	850 Kt.MW.yr bound ($\leq 90\%$)
$\varepsilon_{e\mu}$	-0.025 ightarrow +0.052	-0.017 ightarrow +0.04
$\varepsilon_{e\tau}$	-0.055 ightarrow +0.023	-0.042 ightarrow +0.012
$\varepsilon_{\mu\tau}$	-0.015 ightarrow +0.013	-0.01 ightarrow +0.01
ε_{ee}	-0.185 ightarrow +0.38	-0.13 ightarrow +0.185
$\varepsilon_{\mu\mu}$	$-0.29 \rightarrow +0.39$	$-0.192 \rightarrow +0.24$
$\varepsilon_{\tau\tau}$	$-0.36 \rightarrow +0.145$	$-0.12 \rightarrow +0.095$