Neutrino mass models: New classification and upper limits on their scale

Juan Herrero-Garcia arXiv: 1903.10552, EPJC, with M. A. Schmidt

> Neutrino Platform Week 2019 Hot Topics in Neutrino Physics CERN, Geneva, October 9th

which is the UV completion of LLHH?

- Tree level. Only seesaws I/II/III. Minimal, GUT connection, leptogenesis, but huge scales imply very hard to test and problem of hierarchies.
- Radiative. No hierarchy problem, and in principle more testable... but hundreds of them! Classified by:
- 1. Topologies at a loop order (up to 3 loops)
- 2. $\Delta \mathscr{L} = 2$ EFT operators beyond the Weinberg operator.

Contents

I - Mechanisms for m_{ν} II - Upper limits III - Lower limits IV - Summary and conclusions

I Mechanisms for m

4

Tree Level: seesaws

Minkowski, Yanagida, Gell-Mann, Mohapatra, Glashow...

yLHN, mNN

yLHΣ, mΣΣ yLΔL, μ HΔ[†]H

SSI SSII SSIII

LOOP-LEVEL MOdels

Zee, Cheng-Li, Babu, Ma, Bonnet, Cepedello, Aristizabal-Sierra, Krauss, Aoki...

6

Examples of Loop models zee, Cheng-Li, Babu

Singly-charged scalar h+: LfLh+

1 loop: Zee model + $\bar{e}y\Phi^{\dagger}L + \mu h^{-}H\Phi$ 2 Loops: Zee-Babu model + $\bar{e}g\bar{e}k^{--} + \mu k^{++}h^{-}h^{-}$

$\Delta \mathscr{L} = 2$ operators

Babu-Leung, De Gouvea-Jenkins

-> Zee model _ Zee-Babu model $O_2 = L^i L^j L^k e^c H^l \epsilon_{ii} \epsilon_{kl}, \quad O_{3a} = L^i L^j Q^k d^c H^l \epsilon_{ij} \epsilon_{kl}, \quad O_{3b} = L^i L^j Q^k d^c H^l \epsilon_{ik} \epsilon_{jl},$ $O_{4a} = L^i L^j \bar{Q}_i \bar{u}^c H^k \epsilon_{jk}, \quad O_{4b} = L^i L^j \bar{Q}_k \bar{u}^c H^k \epsilon_{ij}, \qquad O_8 = L^i \bar{e}^c \bar{u}^c d^c H^j \epsilon_{ij}.$ $O_9 = L^i L^j L^k e^c \hat{L}^l e^c \epsilon_{ij} \epsilon_{kl},$ $O_{10} = L^i L^j L^k e^c Q^l d^c \epsilon_{ij} \epsilon_{kl},$ $O_{11a} = L^i L^j Q^k d^c Q^l d^c \epsilon_{ij} \epsilon_{kl},$ $O_{11b} = L^i L^j Q^k d^c Q^l d^c \epsilon_{ik} \epsilon_{il},$ $O_{12b} = L^i L^j \bar{Q}_k \bar{u}^c \bar{Q}_l \epsilon_{ij} \epsilon^{kl},$ $O_{12a} = L^i L^j \bar{Q}_i \bar{u}^c \bar{Q}_j \bar{u}^c,$ $O_{13} = L^i L^j \bar{Q}_i \bar{u}^c L^k e^c \epsilon_{ik},$ $O_{14a} = L^i L^j \bar{Q}_k \bar{u}^c Q^k d^c \epsilon_{ij},$ $O_{16} = L^i L^j \bar{e}^c d^c \bar{e}^c u^c \epsilon_{ii},$ $O_{15} = L^i L^j L^k d^c \bar{L}_i \bar{u}^c \epsilon_{ik},$ $O_{17} = L^i L^j d^c d^c \bar{d}^c \bar{u}^c \epsilon_{ij},$ $O_{18} = L^i L^j d^c u^c \bar{u}^c \bar{u}^c \epsilon_{ij},$ $O_{19} = L^i Q^j d^c d^c \bar{e}^c \bar{u}^c \epsilon_{ij},$ $O_{20} = L^i d^c \bar{Q}_i \bar{u}^c \bar{e}^c \bar{u}^c.$

Estimate

De Gouvea-Jenkins

Operator $\mathcal{O}_2 = LLL\bar{e}H$

Estimate Chirality flip $m_{\nu} \simeq c_2$ Loop factor Model: Zee $C_{f\mu\tau}^{2}y_{\tau}\mu$ $y_{\tau}v^{2}$ $m_{\nu} \sim \frac{m_{h^{+}}}{16\pi^{2}m_{h^{+}}}$

Parametrisalion

 $m_{\nu} \simeq \frac{c_{\rm R} v^2}{(16\pi^2)^{\ell} \Lambda}$, with $c_{\rm R} \simeq \prod_i g_i \times \epsilon \times \left(\frac{v^2}{\Lambda^2}\right)^n$ Loop factor μ/Λ LLHH(H[†]H)ⁿ $\ell = 1 \rightarrow \Lambda < 10^{12} \,\mathrm{GeV}$ $m_{\nu} \gtrsim 0.05 \,\mathrm{eV} \implies \ell = 2 \rightarrow \Lambda < 10^{10} \,\mathrm{GeV}$ $\ell = 3 \rightarrow \Lambda < 10^8 \,\mathrm{GeV}$ Can we do better? Hybrid approach

II - Upper Limils

Main idea

 $\Lambda - \begin{cases} 1. & \text{Observation: } m_{\nu} \text{ requires at least one new particle} \\ X (mass M) \text{ coupled to SM lepton/s, carrying } \mathscr{L}. \end{cases}$

2. QFT: $\Delta \mathscr{L} = 2$ by new operators at Λ , which encode the model-dependent UV physics.

3. $m_{\nu} \propto 1/\Lambda$ is generated.

M -- X

v-SM

4. $m_{\nu} > 0.05 \text{ eV \& M} \leq \Lambda \Longrightarrow$

Conservative upper bound on M

Bounds apply to all models where X is the lightest state.

Example al tree level

⊘ SM bilinear LH (SS I):

1. New particle: fermion singlet \bar{N} with Y = 0 and $\mathscr{L} = -1$.

- 2. $\Delta \mathscr{L} = 2$ by $y\bar{N}LH + M\bar{N}\bar{N}$.
- 3. $m_{\nu} = y^2 v^2 / M$ is generated.
- 4. $m_{\nu} > 0.05 \, {\rm eV} \, \&$ y $\leq 1 \Longrightarrow$ conservative upper bound: $M \leq 10^{15} \, {\rm GeV}$

New particles X

 $\Lambda \longrightarrow \Delta \mathscr{L} = 2$ Assuming no extra BSM symmetries: $M \longrightarrow Particle X \longrightarrow \begin{cases} LH \longrightarrow \bar{N}(SS I), \bar{\Sigma}_0(SS III) \\ LL \longrightarrow \Delta(SS II), h(Zee) \\ ee \longrightarrow k(Zee - Babu) \\ LH^{\dagger} \longrightarrow \dots \end{cases}$

EW - SM

m, al tree level

 $X \sim (SU(3)_c, SU(2)_L, U(1)_Y)_{S/F/V}^{\mathscr{L}, 3\mathscr{B}}$ Seesaws $\Delta \mathscr{L} = 2$ Loop order

Sesaus

			-	10 F. 100		
Particle	$\Delta \mathcal{L} = 0$	$ \Delta \mathcal{L} = 2$	BL	ℓ	$m_{ u}$	Upper bound
$\bar{N} \sim (1, 1, 0)_F^{-1, 0}$	$yar{N}HL$	$Mar{N}ar{N}$	${\mathcal O}_1$	0	$\frac{y^2 v^2}{M}$	$M \lesssim 10^{15}~{ m GeV}$
$\Delta \sim (1,3,1)_S^{-2,0}$	$y L \Delta L$	$\mu H \Delta^{\dagger} H$	${\mathcal O}_1$	0	$\frac{y \mu v^2}{M^2}$	$M \lesssim 10^{15} { m GeV}$
$\bar{\Sigma}_0 \sim (1,3,0)_F^{-1,0}$	$y \bar{\Sigma}_0 L H$	$M \bar{\varSigma}_0 \bar{\varSigma}_0$	${\mathcal O}_1$	0	$\frac{y^2 v^2}{M}$	$M \lesssim 10^{15} { m GeV}$

mu al Loop Level

 $X \sim (SU(3)_c, SU(2)_L, U(1)_Y)_{S/F/V}^{\mathcal{L}, 3\mathcal{B}}$

Zee Loop order Zee-Babu

S	Particle	$\Delta \mathcal{L} = 0$	$ \Delta \mathcal{L} = 2$	BL	l	$m_{ u}$	Upper bound
3	$\bar{N} \sim (1, 1, 0)_F^{-1, 0}$	$yar{N}HL$	$Mar{N}ar{N}$	${\mathcal O}_1$	0	$rac{y^2 v^2}{M}$	$M \lesssim 10^{15}~{\rm GeV}$
0	$\Delta \sim (1, 3, 1)_S^{-2, 0}$	$y L \Delta L$	$\mu H \Delta^{\dagger} H$	${\mathcal O}_1$	0	$\frac{y \mu \delta^2}{\sqrt{1^2}}$	$M \lesssim 10^{15} { m GeV}$
Ň	$\bar{\Sigma}_0 \sim (1,3,0)_F^{-1,0}$	$y \bar{\Sigma}_0 L H$	$M ar{\Sigma}_0 ar{\Sigma}_0$	\mathcal{O}_1	0	$\frac{y^2v^2}{M}$	$M \lesssim 10^{15} { m GeV}$
Ň	$I (1.2, 1/2)^{1,0}$	$m \overline{L}_1 L$	$\frac{c}{\Lambda}L_1HLH$	\mathcal{O}_1	0	$\frac{c m}{M} \frac{v^2}{\Lambda}$	$M \lesssim 10^{15} { m GeV}$
V	$L_1 \sim (1, 2, -1/2)_F$	$y H^\dagger \overline{e} L_1$	$rac{c}{\Lambda^2} ar{L}_1 ar{u} ar{d}^\dagger L^\dagger$	\mathcal{O}_8^\dagger	2	$\frac{cyy_uy_dy_l}{(4\pi)^4}\frac{v^2}{\Lambda}$	$M \lesssim 10^7~{\rm GeV}$
	$h \sim (1, 1, 1)_S^{-2, 0}$	yLLh	$rac{c}{\Lambda} h^\dagger \overline{e} L H$	\mathcal{O}_2	1	$rac{c \ y \ y_l}{(4\pi)^2} \ rac{v^2}{\Lambda}$	$M \lesssim 10^{10}~{\rm GeV}$
N N	$k \sim (1, 1, 2)_S^{-2, 0}$	$yar{e}^\dagger ar{e}^\dagger k$	$rac{c}{\Lambda^3}k^\dagger L^\dagger L^\dagger L^\dagger L^\dagger L^\dagger$	\mathcal{O}_9^{\dagger}	2	$rac{c \ y \ y_l^2}{(4\pi)^4} \ rac{v^2}{\Lambda}$	$M \lesssim 10^6 { m ~GeV}$
	$\bar{E} \sim (1, 1, 1)^{-1, 0}$	$yar{E}LH^\dagger$	$rac{c}{\Lambda^4} LEHQ^{\dagger} \bar{u}^{\dagger} H$	${\cal O}_6$	2	$rac{c \ y \ y_u}{(4\pi)^4} rac{v^2}{\Lambda}$	$M \lesssim 10^{10} { m GeV}$
ଟ୍	$(1, 1, 1)_{F}$	$mar{e}E$	$rac{c}{A^3}ar{E}LLLH$	\mathcal{O}_2	1	$\frac{c m}{M} \frac{y_l}{(4\pi)^2} \frac{v^2}{\Lambda}$	$M \lesssim 10^{10}~{ m GeV}$
Ĩ	$\bar{\Sigma}_1 \sim (1,3,1)_F^{-1,0}$	$y H^{\dagger} \bar{\Sigma}_1 L$	$\frac{c}{\Lambda^2}LHH\Sigma_1H$	$\mathcal{O}_1^{\prime 1}$	1	$\frac{c y}{(4\pi)^2} \frac{v^2}{\Lambda}$	$M \lesssim 10^{12} { m GeV}$
6	$L_2 \sim (1, 2, -3/2)_F^{1,0}$	$y H \overline{e} L_2$	$\frac{c}{\Lambda^2} \bar{L}_2 L L L$	\mathcal{O}_2	1	$rac{\hat{c} y \hat{y}_l}{(4\pi)^2} rac{v^2}{\Lambda}$	$M \lesssim 10^{11} { m GeV}$
	$X_2 \sim (1, 2, 3/2)_V^{-2, 0}$	$y \bar{e}^{\dagger} \bar{\sigma}^{\mu} L X_{2\mu}$	$\frac{c}{\Lambda} \bar{u}^{\dagger} \bar{\sigma}^{\mu} \bar{d} X_{2\mu}^{\dagger} H$	\mathcal{O}_8	2	$\frac{cyy_uy_dy_e}{(4\pi)^4}\frac{v^2}{\Lambda}$	$M \lesssim 10^7~{ m GeV}$

Particles with B (LQ)

 $X \sim (SU(3)_c, SU(2)_L, U(1)_Y)_{S/F/V}^{\mathcal{L}, 3\mathcal{B}}$

Radiative

 $\Delta \mathscr{L} = 2$ Loop order

Particle	$\Delta \mathcal{L} = 0$	$ \Delta \mathcal{L} = 2$	BL	l	$m_{ u}$	Upper bound
$\tilde{R}_2 \sim (3, 2, 1/6)_S^{-1, 1}$	$y\overline{d}L ilde{R}_2$	$rac{c}{\Lambda} ilde{R}_2^\dagger Q L H$	\mathcal{O}_{3_b}	1	$\frac{c y y_d}{(4\pi)^2} \frac{v^2}{\Lambda}$	$M \lesssim 10^{11}~{\rm GeV}$
$R_2 \sim (3, 2, 7/6)_S^{-1, 1}$	$y \bar{e}^{\dagger} Q^{\dagger} R_2$	$rac{c}{\Lambda^3}R_2^\dagger L^\dagger L^\dagger L^\dagger \bar{d}^\dagger$	${\cal O}_{10}^\dagger$	2	$\frac{c y y_d y_l}{(4\pi)^4} \frac{v^2}{\Lambda}$	$M \lesssim 10^7~{\rm GeV}$
	$y \bar{u} L R_2$	$rac{c}{A^3}R_2^\dagger L^\dagger L^\dagger L^\dagger \bar{d}^\dagger$	${\cal O}_{15}^\dagger$	3	$\frac{cyy_dy_ug^2}{2(4\pi)^6}\frac{v^2}{\Lambda}$	$M \lesssim 10^6~{ m GeV}$
$S_1 \sim (\overline{3}, 1, 1/3)_S^{-1, -1}$	$y LQS_1$	$rac{c}{\Lambda}S_1^\dagger LH\overline{d}$	${\mathcal O}_{3_b}$	1	$\frac{c y y_d}{(4\pi)^2} \frac{v^2}{\Lambda}$	$M \lesssim 10^{11}~{\rm GeV}$
	$yar{u}^\daggerar{e}^\dagger S_1$	$rac{c}{\Lambda}S_1^\dagger LHar{d}$	\mathcal{O}_8	2	$\frac{cyy_ly_uy_d}{(4\pi)^4}\frac{v^2}{\Lambda}$	$M \lesssim 10^7~{ m GeV}$
$S_3 \sim (\overline{3}, 3, 1/3)_S^{-1, -1}$	$y LS_3Q$	$rac{c}{\Lambda}\overline{d}LS_3^{\dagger}H$	${\mathcal O}_{{3}_b}$	1	$rac{c y y_d}{(4\pi)^2} rac{v^2}{\Lambda}$	$M \lesssim 10^{11}~{\rm GeV}$
$\tilde{S}_1 \sim (\bar{3}, 1, 4/3)_S^{-1, -1}$	$y \bar{e}^\dagger \bar{d}^\dagger \tilde{S}_1$	$\frac{c}{A^3} \tilde{S}_1^\dagger L^\dagger L^\dagger L^\dagger Q^\dagger$	${\cal O}_{10}^\dagger$	2	$\frac{c y y_d y_l}{(4\pi)^4} \frac{v^2}{\Lambda}$	$M \lesssim 10^7~{\rm GeV}$
$V_2 \sim (\bar{3}, 2, 5/6)_V^{-1, -1}$	$y\bar{d}^{\dagger}\bar{\sigma}^{\mu}V_{2\mu}L$	$rac{c}{\Lambda^5}Q^\dagger ar{\sigma}^\mu L V^\dagger_{2\mu} H ar{e} L H$	\mathcal{O}_{23}	3	$rac{c \ y \ y_d \ y_l}{(4\pi)^6} rac{v^2}{\Lambda}$	$M \lesssim 10^4~{ m GeV}$
	$y Q \sigma^{\mu} V_{2\mu} \bar{e}^{\dagger}$	$rac{c}{\Lambda^5}Q^{\dagger}ar{\sigma}^{\mu}LV^{\dagger}_{2\mu}Har{e}LH$	$\mathcal{O}_{44_{a,b,d}}$	3	$rac{c y g^2}{2(4\pi)^6} rac{v^2}{\Lambda}$	$M \lesssim 10^7 { m ~GeV}$
$\tilde{V}_2 \sim (\bar{3}, 2, -1/6)_V^{-1, -1}$	$y \bar{u}^{\dagger} \bar{\sigma}^{\mu} \tilde{V}_{2\mu} L$	$rac{c}{\Lambda}Q^{\dagger}ar{\sigma}^{\mu}LH ilde{V}_{2\mu}^{\dagger}$	\mathcal{O}_{4_a}	1	$rac{c y y_u}{(4\pi)^2} rac{v^2}{\Lambda}$	$M \lesssim 10^{12}~{\rm GeV}$
$U_1 \sim (3, 1, 2/3)_V^{-1, 1}$	$y Q^{\dagger} \bar{\sigma}^{\mu} U_{1\mu} L$	$rac{c}{\Lambda} ar{u}^\dagger ar{\sigma}^\mu LHU^\dagger_{1\mu}$	\mathcal{O}_{4_a}	1	$\frac{c y y_u}{(4\pi)^2} \frac{v^2}{\Lambda}$	$M \lesssim 10^{12} { m GeV}$
	$yar{d}\sigma^\mu U_{1\mu}ar{e}^\dagger$	$rac{c}{\Lambda} ar{u}^\dagger ar{\sigma}^\mu LHU^\dagger_{1\mu}$	\mathcal{O}_8	2	$\frac{c y y_u y_d y_l}{(4\pi)^4} \frac{v^2}{\Lambda}$	$M \lesssim 10^7~{ m GeV}$
$U_3 \sim (3, 3, 2/3)_V^{-1, 1}$	$y Q^{\dagger} \bar{\sigma}^{\mu} U_{3\mu} L$	$\frac{c}{\Lambda} \bar{u}^{\dagger} \bar{\sigma}^{\mu} L U^{\dagger}_{3\mu} H$	\mathcal{O}_{4_a}	1	$rac{c y y_u}{(4\pi)^2} rac{v^2}{\Lambda}$	$M \lesssim 10^{12}~{\rm GeV}$
$\tilde{U}_1 \sim (3, 1, 5/3)_V^{-1, 1}$	$y\bar{u}\sigma^{\mu}\bar{e}^{\dagger}\tilde{U}_{1\mu}$	$\frac{c}{\Lambda^5} \bar{u}^{\dagger} \bar{\sigma}^{\mu} L H \tilde{U}^{\dagger}_{1\mu} \bar{e} L H$	\mathcal{O}_{46}	3	${cyg^2\over 2(4\pi)^6}{v^2\over\Lambda}$	$M \lesssim 10^7 { m ~GeV}$

Naturalness limits much stronger, but less robust.

Phenomenology controlled by:

- A. Renormalizable interaction
- 1. Violation of: \mathscr{L}_{α} , universality, U_{PMNS} unitarity, NSIs.
- 2. Collider searches.
- B. Non-renormalizable $\Delta \mathscr{L} = 2$ operator
- 1. $0\nu\beta\beta$.
- 2. Washout of BAU.

 $0\nu\beta\beta$ Ibarra, De Gouvea, Blennow, Rodejohann, Bonnet, Deppisch... a New contributions may be significant for: $M_{\bar{N}} \sim \mathcal{O}(\text{GeV})$ 1. SS I, if 2. New D=7 operators, if $\Lambda \lesssim \mathcal{O}(100) \text{ TeV}$ Like $\mathcal{O}_8 = ueL\bar{d}H$, for L_1, X_2, S_1, U_1

B violation (LG)

Weinberg, Weldon, Nath, Barr, Babu, Arnold, Dorsner...

Di-quark couplings generate tree-level nucleon decays:

 $S_{1} = (\bar{3}, 1, 1/3): \quad y_{1}S_{1}ue + y_{2}S_{1}^{\dagger}ud$ $\Gamma(p \rightarrow \pi^{0}e^{+}) \simeq \frac{|y_{1}|^{2}|y_{2}|^{2}}{8\pi} \frac{m_{p}^{5}}{M_{S_{1}}^{4}} \lesssim \frac{1}{10^{33} \text{ y}}$ $\Delta(\mathscr{B} - \mathscr{L}) = 0 \implies M_{S_{1}} \gtrsim 10^{16} \text{ GeV}$ Therefore, S_{1} cannot generate m_{ν} .

[In some cases, $\Delta(\mathscr{B}) = -\Delta(\mathscr{L}) = 1$ decays.]

IV-Summary and conclusions

Summary plac

Tree level

Loop level

Summary place

Tree level

200 Summary Tree Level Loop level Upper bounds: Lower bounds: - Neutrino mass (blue bar) - Nucleon decays (hatched) Upper Limits on X mass 10^{14} - Higgs naturalness (red arrow) - Collider (black/white circles) 10^{12} - $M \underbrace{(Gec)}{Gec} M$ 10^{6} - 10^{4} - 10^{2} $\bar{N} \triangleq \bar{\Sigma}_0 L_1$ $h \ k \ \overline{E} \ \overline{\Sigma}_1 L_2$ $\tilde{R}_2 R_2 S_1 S_3 \tilde{S}_1$ X_2 $\frac{V_1 \tilde{V}_2 U_1 U_3 \tilde{U}_1}{V_1 U_3 \tilde{U}_1}$ Higgs naturalness disfavours 1 to 5 more (in green)

Conclusions

- New simple classification of m_{ν} models in "just" 20 categories.
- Robust model-independent upper limits on all possible new states involved in m_{ν} .
- · Hybrid approach useful to study phenomenology.
- a 14 allowed categories by nucleon decays.
- Collider searches + Higgs naturalness further disfavour 1 to
 5 more, leaving 9 to 13 allowed categories.
- Most promising states: doubly-charged scalars (<1000 TeV).

Backenup

QUESCIONS

A. How can we classify the plethora of models?
B. What are the most testable ones, with lightest states?
C. Is any class of models already ruled-out?
D. How to study phenomenology of classes of models?

How is mu generaled?

- \circ ν oscillations imply that ν are massive.
- At least one u has a mass larger or equal to 0.05 eV.
- However, in the SM v are massless: need BSM physics.
- @ Hint: Lowest dimension EFT $Q_W = LLHH$ has $\Delta \mathscr{L} = 2$.
- After EWSB, naturally light Majorana m_{ν} .
- Which is the UV completion of Ow = LLHH?

Loop Level m_{ν} estimate

De Gouvea

- Weinberg operator induced via $\Delta \mathscr{L} = 2$ operators. - Estimate of the matching at loop level:

1. Each loop: $1/(16\pi^2)$

2. SM chirality-flips: y_{τ}, y_t

3. W-bosons: $g^2/2$

B violation (LG)

Weinberg, Weldon, Nath, Barr, Babu, Arnold, Dorsner...

 $S_1 \bar{d}\bar{u}, \ S_{1,3} Q^{\dagger} Q^{\dagger}, \ \bar{u}\bar{\sigma}^{\mu} V_{2\mu} Q^{\dagger}, \ \bar{d}\sigma^{\mu} \tilde{V}_{2\mu} Q^{\dagger} \Rightarrow M \gtrsim 10^{16} \text{ GeV}$ $\tilde{S}_1 \bar{u}\bar{u} \Rightarrow p \rightarrow e^+ e^- \bar{\nu}_e \pi^+ M \gtrsim 10^{11} \text{ GeV}$ $\tilde{R}_2 Q H^{\dagger} Q / \Lambda', \quad H^{\dagger} R_2 \bar{d}^{\dagger} \bar{d}^{\dagger} / \Lambda', \quad \bar{d}^{\dagger} \sigma_{\mu} H^{\dagger} Q U^{\mu}_{1,3} / \Lambda' \qquad B+L$ $p \rightarrow K^+ \nu$ $\Lambda' = M_p \Rightarrow M \gtrsim 10^7 \text{ GeV}$

Mashoul of BAU

Harvey, Turner

• $\Delta \mathscr{L} = 2$ operators + sphalerons may erase the BAU, unless:

 $\Gamma(T_{\mathscr{B}-\mathscr{L}}) \leq H(T_{\mathscr{B}-\mathscr{L}})$ $\implies \Lambda \gtrsim [M_p T_{\mathscr{B}-\mathscr{L}}^{2d-9} / (20 \text{ PS}_n)]^{1/(2d-8)}$ $T_{\mathscr{B}-\mathscr{L}} = 10^6, 10^{10}, 10^{12} \text{ GeV} \Longrightarrow \begin{cases} \Lambda_{d=5} \gtrsim 10^{11}, 10^{13}, 10^{14} \text{ GeV}\\ \Lambda_{d>5} \gtrsim 10^7, 10^{10}, 10^{13} \text{ GeV} \end{cases}$

Strong limits on Λ , dependent on $\mathcal{B} - \mathcal{L}$ scale.

Higgs haluralness: scalars

 $\int_{H} \int_{H} \int_{H} \delta m_{H}^{2} \simeq -\left(\frac{\lambda}{16\pi^{2}}\right) N_{w} N_{c} M^{2} \ln\left(\frac{M^{2}}{\Lambda^{2}}\right)$

 $\int_{H} \int_{W,Z} \int_{W,Z} \int_{S} \delta\lambda \simeq \left(\frac{3}{32\pi^2}\right) (Y^2 g'^4 + C_2 g^4) \ln\left(\frac{M^2}{\Lambda^2}\right)$

Higgs naturalness: fermions

$$\delta m_H^2 \simeq \left(\frac{1}{4\pi^2}\right) N_c |y|^2 M^2 \ln \left(\frac{1}{4\pi^2}\right) N_c$$

SS I. Vissani, Casas

 Λ^2

$$\delta m_{H}^{2} \simeq \left(\frac{M^{2}}{32\pi^{4}}\right) N_{c} (3Dg^{4} + N_{w}Y^{2}g^{\prime 4}) \ln\left(\frac{M^{2}}{\Lambda^{2}}\right)$$
SS III, Farina

CMS LQ Limils

Summary

