Entanglement transfer using local operations

A. Neven, D. Gunn and B. Kraus

Institut für Theoretische Physik, Universität Innsbruck, 6020 Innsbruck, Austria

2019 Gemeinsame Jahrestagung von SPG und ÖPG, Zürich

27 August 2019
Introduction: quantum entanglement

Entanglement = global property of multipartite systems

\[|\psi\rangle \text{ entangled} \iff |\psi\rangle \neq |\phi_1\rangle \otimes |\phi_2\rangle \otimes |\phi_3\rangle \]
Introduction: quantum entanglement

Entanglement = global property of multipartite systems

\[|\psi\rangle \text{ entangled } \iff |\psi\rangle \neq |\phi_1\rangle \otimes |\phi_2\rangle \otimes |\phi_3\rangle \]

A system of locally prepared states cannot be entangled!
Local manipulation of entanglement

Distant experimenters sharing the parties of a multipartite state can:

- perform local operations (e.g. measurements)
- share and exploit information through classical communication

source: image by Alvaro Feito for wikipedia.org
Local manipulation of entanglement

Distant experimenters sharing the parties of a multipartite state can:

- perform local operations (e.g. measurements)
- share and exploit information through classical communication

Entanglement cannot be created (or increased) using local operations,
Local manipulation of entanglement

Distant experimenters sharing the parties of a multipartite state can:

- perform local operations (e.g. measurements)
- share and exploit information through classical communication

Entanglement cannot be created (or increased) using local operations,

BUT entangled states can be manipulated locally.

source: image by Alvaro Feito for wikipedia.org
Local manipulation of entanglement

Distant experimenters sharing the parties of a multipartite state can:

- perform local operations (e.g. measurements)
- share and exploit information through classical communication

Entanglement cannot be created (or increased) using local operations,

BUT entangled states can be manipulated locally.

Example: Transform entangled state $|\psi\rangle$ into a new entangled state $|\phi\rangle$

$|\psi\rangle \xrightarrow{LOCC} |\phi\rangle$

source: image by Alvaro Feito for wikipedia.org
Bipartite states

Majorization condition [M. Nielsen, PRL 83, 436 (1999)]

For bipartite states $|\psi\rangle, |\phi\rangle \in \mathcal{H}_1 \otimes \mathcal{H}_2$,

$$|\psi\rangle \xrightarrow{\text{LOCC}} |\phi\rangle \text{ iff } \lambda_\psi \prec \lambda_\phi,$$

where λ_ψ (λ_ϕ) are the eigenvalues of $\text{Tr}_1|\psi\rangle\langle\psi|$ ($\text{Tr}_1|\phi\rangle\langle\phi|$).
Bipartite states

Majorization condition [M. Nielsen, PRL 83, 436 (1999)]

For bipartite states $|\psi\rangle, |\phi\rangle \in \mathcal{H}_1 \otimes \mathcal{H}_2$,

$$|\psi\rangle \overset{\text{LOCC}}{\longrightarrow} |\phi\rangle \iff \lambda_\psi < \lambda_\phi,$$

where $\lambda_\psi (\lambda_\phi)$ are the eigenvalues of $\text{Tr}_1 |\psi\rangle\langle\psi| \ (\text{Tr}_1 |\phi\rangle\langle\phi|)$.

Simple characterization of LOCC transformations.
Majorization condition [M. Nielsen, PRL 83, 436 (1999)]

For bipartite states $|\psi\rangle$, $|\phi\rangle \in \mathcal{H}_1 \otimes \mathcal{H}_2$,

$$|\psi\rangle \overset{\text{LOCC}}{\longrightarrow} |\phi\rangle \text{ iff } \lambda_\psi \prec \lambda_\phi,$$

where λ_ψ (λ_ϕ) are the eigenvalues of $\text{Tr}_1|\psi\rangle\langle\psi|$ ($\text{Tr}_1|\phi\rangle\langle\phi|$).

Simple characterization of LOCC transformations.

The state $|\Phi^+\rangle = 1/\sqrt{d} \sum_{i=1}^{d} |i\rangle_1 |i\rangle_2$ can reach any other state via LOCC.
Bipartite states

Majorization condition [M. Nielsen, PRL 83, 436 (1999)]

For bipartite states $|\psi\rangle, |\phi\rangle \in \mathcal{H}_1 \otimes \mathcal{H}_2$,

$$|\psi\rangle \xrightarrow{\text{LOCC}} |\phi\rangle \iff \lambda_\psi \prec \lambda_\phi,$$

where λ_ψ (λ_ϕ) are the eigenvalues of $\text{Tr}_1 |\psi\rangle\langle\psi|$ ($\text{Tr}_1 |\phi\rangle\langle\phi|$).

Simple characterization of LOCC transformations.

The state $|\Phi^+\rangle = 1/\sqrt{d} \sum_{i=1}^{d} |i\rangle_1 |i\rangle_2$ can reach any other state via LOCC.

Maximally entangled state
Bipartite states

Majorization condition [M. Nielsen, PRL 83, 436 (1999)]

For bipartite states $|\psi\rangle, |\phi\rangle \in \mathcal{H}_1 \otimes \mathcal{H}_2$,

$$ |\psi\rangle \xrightarrow{\text{LOCC}} |\phi\rangle \text{ iff } \lambda_\psi \prec \lambda_\phi, $$

where λ_ψ (λ_ϕ) are the eigenvalues of $\text{Tr}_1 |\psi\rangle\langle\psi| \ (\text{Tr}_1 |\phi\rangle\langle\phi|)$.

- Simple characterization of LOCC transformations.
- The state $|\Phi^+\rangle = 1/\sqrt{d} \sum_{i=1}^{d} |i\rangle_1 |i\rangle_2$ can reach any other state via LOCC.

Maximally entangled state

- Universal resource in the bipartite LOCC framework.
Universal resource for multipartite states?

For states of 3 qubits:

- There is no maximally entangled state.
- BUT there exists a maximally entangled set.

Maximally entangled set (MES) [J. De Vicente et al., PRL 111,110502 (2013)]

In any quantum system, the MES contains the minimal number of states such that any state of the system can be reached from a state of the MES (but no state in the MES can be reached from a state outside the MES).
Universal resource for multipartite states?

For states of 3 qubits:

- There is no maximally entangled state.
- BUT there exists a maximally entangled set.

Maximally entangled set (MES) [J. De Vicente et al., PRL 111,110502 (2013)]

In any quantum system, the MES contains the minimal number of states such that any state of the system can be reached from a state of the MES (but no state in the MES can be reached from a state outside the MES).

However,

MES in homogeneous systems [D. Sauerwein et al., PRX 8,031020 (2018)]

In any N-qudit system (with $N \geq 4$), the MES contains almost all states of the Hilbert space.
Increasing the resource of the parties

\[|\psi\rangle \]
Increasing the resource of the parties

\[|\psi\rangle \]

\[\psi \]
Increasing the resource of the parties

A

|ψ⟩

|φ⟩

B
Increasing the resource of the parties

\[|\psi\rangle \]

\[|\phi\rangle \]
Increasing the resource of the parties

Given $|\psi_1\rangle$, $|\psi_2\rangle$:

$$|\psi_1\rangle \xrightarrow{\text{LOCC}} |\psi_2\rangle,$$
Increasing the resource of the parties

![Diagram showing entanglement transfer using local operations](image)

- Given $|\psi_1\rangle$, $|\psi_2\rangle$: $|\psi_1\rangle \xrightarrow{\text{LOCC}} |\psi_2\rangle$,

- $\exists\, |\phi_1\rangle$, $|\phi_2\rangle$: $|\psi_1\rangle \otimes |\phi_1\rangle \xrightarrow{\text{LOCC}} |\psi_2\rangle \otimes |\phi_2\rangle$
Increasing the resource of the parties

Given $|\psi_1\rangle$, $|\psi_2\rangle$: $|\psi_1\rangle \xrightarrow{\text{LOCC}} |\psi_2\rangle$,

$\exists \phi_1, \phi_2$: $|\psi_1\rangle \otimes |\phi_1\rangle \xrightarrow{\text{LOCC}} |\psi_2\rangle \otimes |\phi_2\rangle$

$|\phi_1\rangle = |\phi_2\rangle \Rightarrow$ catalytic LOCC transformation
Increasing the resource of the parties

- Given $|\psi_1\rangle, |\psi_2\rangle : |\psi_1\rangle \xrightarrow{LOCC} |\psi_2\rangle$,

- $\exists? |\phi_1\rangle, |\phi_2\rangle : |\psi_1\rangle \otimes |\phi_1\rangle \xrightarrow{LOCC} |\psi_2\rangle \otimes |\phi_2\rangle$

$|\phi_1\rangle = |\phi_2\rangle \Rightarrow$ catalytic LOCC transformation

Full characterization still open.
Increasing the resource of the parties

- Given $|\psi_1\rangle, |\psi_2\rangle : |\psi_1\rangle \xrightarrow{LOCC} |\psi_2\rangle$,
- $\exists \, |\phi_1\rangle, |\phi_2\rangle : |\psi_1\rangle \otimes |\phi_1\rangle \xrightarrow{LOCC} |\psi_2\rangle \otimes |\phi_2\rangle$
Increasing the resource of the parties

Given $|\psi_1\rangle$, $|\psi_2\rangle$:

$|\psi_1\rangle \xrightarrow{\text{LOCC}} |\psi_2\rangle$,

$\exists \phi_1, \phi_2$:

$|\psi_1\rangle \otimes |\phi_1\rangle \xrightarrow{\text{LU}} |\psi_2\rangle \otimes |\phi_2\rangle$
2-Qubit state transformation

\[|\psi\rangle \in \mathbb{C}^2 \otimes \mathbb{C}^2 \Leftrightarrow \sum_{i=1}^{2} \sqrt{\lambda_i} |i\rangle |i\rangle \]

\[|\phi\rangle \in \mathbb{C}^d \otimes \mathbb{C}^d \Leftrightarrow \sum_{i=1}^{d} \sqrt{\mu_i} |i\rangle |i\rangle \]
2-Qubit state transformation

\[|\psi\rangle \in \mathbb{C}^2 \otimes \mathbb{C}^2 \xrightarrow{LU} \sum_{i=1}^{2} \sqrt{\lambda_i} |i\rangle |i\rangle \]

\[|\phi\rangle \in \mathbb{C}^d \otimes \mathbb{C}^d \xrightarrow{LU} \sum_{i=1}^{d} \sqrt{\mu_i} |i\rangle |i\rangle \]

Entanglement parameter of \(|\psi\rangle\): \(a_\psi \equiv \frac{\lambda_2}{\lambda_1} \in (0, 1]\)
2-Qubit state transformation

\[|\psi\rangle \in \mathbb{C}^2 \otimes \mathbb{C}^2 \overset{LU}{\simeq} \sum_{i=1}^{2} \sqrt{\lambda_i} |i\rangle |i\rangle \]

\[|\phi\rangle \in \mathbb{C}^d \otimes \mathbb{C}^d \overset{LU}{\simeq} \sum_{i=1}^{d} \sqrt{\mu_i} |i\rangle |i\rangle \]

Entanglement parameter of \(|\psi\rangle\): \(a_\psi \equiv \frac{\lambda_2}{\lambda_1} \in (0, 1]\)

\(d = 2\)

- \(|\psi\rangle \otimes |\phi\rangle \leftrightarrow |\psi\rangle \otimes |\phi\rangle, \quad U_1, U_2 = Id\)
- \(|\psi\rangle \otimes |\phi\rangle \leftrightarrow |\phi\rangle \otimes |\psi\rangle, \quad U_1, U_2 = swap\)
2-Qubit state transformation

\[|\psi\rangle \in \mathbb{C}^2 \otimes \mathbb{C}^2 \xrightarrow{LU} \sum_{i=1}^{2} \sqrt{\lambda_i} |i\rangle |i\rangle \]

\[|\phi\rangle \in \mathbb{C}^d \otimes \mathbb{C}^d \xrightarrow{LU} \sum_{i=1}^{d} \sqrt{\mu_i} |i\rangle |i\rangle \]

\(d \) even: possible to split \(|\phi\rangle\) in \(|\phi_1\rangle \otimes |\phi_2\rangle \in (\mathbb{C}^2 \otimes \mathbb{C}^2) \otimes (\mathbb{C}^{d/2} \otimes \mathbb{C}^{d/2}) \)

- \(|\psi\rangle \otimes (|\phi_1\rangle \otimes |\phi_2\rangle) \leftrightarrow |\phi_1\rangle \otimes (|\psi\rangle \otimes |\phi_2\rangle)\), \(U_1, U_2 = \text{partial swap} \)
2-Qubit state transformation

\[|ψ⟩ \in \mathbb{C}^2 \otimes \mathbb{C}^2 \overset{LU}{\cong} \sum_{i=1}^{2} \sqrt{\lambda_i} |i⟩ |i⟩ \]

\[|φ⟩ \in \mathbb{C}^d \otimes \mathbb{C}^d \overset{LU}{\cong} \sum_{i=1}^{d} \sqrt{\mu_i} |i⟩ |i⟩ \]

\[d \text{ even: possible to split } |φ⟩ \text{ in } |φ_1⟩ \otimes |φ_2⟩ \in (\mathbb{C}^2 \otimes \mathbb{C}^2) \otimes (\mathbb{C}^{d/2} \otimes \mathbb{C}^{d/2}) \]

- \[|ψ⟩ \otimes (|φ_1⟩ \otimes |φ_2⟩) \leftrightarrow |φ_1⟩ \otimes (|ψ⟩ \otimes |φ_2⟩), \quad U_1, U_2 = \text{partial swap} \]

If \(E(ψ) \neq E(φ_1) \), some entanglement is transfered!
2-Qubit state transformation

\[|\psi\rangle \mapsto |\phi\rangle \]

\[|\psi\rangle \in \mathbb{C}^2 \otimes \mathbb{C}^2 \xrightarrow{LU} \sum_{i=1}^{2} \sqrt{\lambda_i} |i\rangle |i\rangle \]

\[|\phi\rangle \in \mathbb{C}^d \otimes \mathbb{C}^d \xrightarrow{LU} \sum_{i=1}^{d} \sqrt{\mu_i} |i\rangle |i\rangle \]

\(d \) even: possible to split \(|\phi\rangle \) in \(|\phi_1\rangle \otimes |\phi_2\rangle \in (\mathbb{C}^2 \otimes \mathbb{C}^2) \otimes (\mathbb{C}^{d/2} \otimes \mathbb{C}^{d/2}) \)

\(\bullet \) \(|\psi\rangle \otimes (|\phi_1\rangle \otimes |\phi_2\rangle) \leftrightarrow |\phi_1\rangle \otimes (|\psi\rangle \otimes |\phi_2\rangle), \quad U_1, U_2 = \text{partial swap} \)

\(\iff \) If \(E(\psi) \neq E(\phi_1) \), some entanglement is transferred!

Using Von Neumann entropy: \(S(\psi \otimes \phi) = S(\psi) + S(\phi) \)

Amount of entanglement transferred: \(\Delta S(\psi) = -\Delta S(\phi) \)
Entanglement transfer for odd dimensions

- No partial swap for entanglement transfer...
Entanglement transfer for odd dimensions

- No partial swap for entanglement transfer... But other solutions!
Entanglement transfer for odd dimensions

- No partial swap for entanglement transfer... But other solutions!

Example: $|\phi\rangle \in C^3 \otimes C^3$ and transformation $|\psi_i\rangle \otimes |\phi_i\rangle \leftrightarrow |\psi_f\rangle \otimes |\phi_f\rangle$
Entanglement transfer for odd dimensions

- No partial swap for entanglement transfer... But other solutions!

Example: $|\phi\rangle \in \mathbb{C}^3 \otimes \mathbb{C}^3$ and transformation $|\psi_i\rangle \otimes |\phi_i\rangle \leftrightarrow |\psi_f\rangle \otimes |\phi_f\rangle$

Only possible if $\tilde{\lambda}_{\phi_i} = \left(\sqrt{\frac{1}{1+a+a^2}}, \sqrt{\frac{a}{1+a+a^2}}, \sqrt{\frac{a^2}{1+a+a^2}} \right)$
Entanglement transfer for odd dimensions

- No partial swap for entanglement transfer... But other solutions!

Example: $|\phi\rangle \in \mathbb{C}^3 \otimes \mathbb{C}^3$ and transformation $|\psi_i\rangle \otimes |\phi_i\rangle \leftrightarrow |\psi_f\rangle \otimes |\phi_f\rangle$

Only possible if

$$\vec{\lambda}_{\phi_i} = \left(\sqrt{\frac{1}{1+a+a^2}}, \sqrt{\frac{a}{1+a+a^2}}, \sqrt{\frac{a^2}{1+a+a^2}} \right)$$

Initial vs final qubit entanglement

![Graph](image-url)
Entanglement transfer for odd dimensions

- No partial swap for entanglement transfer... But other solutions!

Example: $\left|\phi\right\rangle \in C^3 \otimes C^3$ and transformation $\left|\psi_i\right\rangle \otimes \left|\phi_i\right\rangle \leftrightarrow \left|\psi_f\right\rangle \otimes \left|\phi_f\right\rangle$

Only possible if $\tilde{\lambda}_{\phi_i} = \left(\sqrt{\frac{1}{1+a+a^2}}, \sqrt{\frac{a}{1+a+a^2}}, \sqrt{\frac{a^2}{1+a+a^2}}\right)$

Entanglement transfer

$$S(\psi_i) - S(\psi_f)$$
Entanglement transfer for odd dimensions

For higher odd dimensions:

- several possible $\tilde{\lambda}_{\phi_i}$
- several possible entanglement transfer
Entanglement transfer for odd dimensions

For higher odd dimensions:

- several possible $\vec{\lambda}_{\phi_i}$
- several possible entanglement transfer

Initial vs final qubit entanglement, $d = 7$
Entanglement transfer for odd dimensions

For higher odd dimensions:

- several possible $\vec{\lambda}_{\phi_i}$
- several possible entanglement transfer

Entanglement transfer, $d = 7$
Entanglement transfer for odd dimensions

For higher odd dimensions:

- several possible $\vec{\lambda}_{\phi_i}$
- several possible entanglement transfer

General result

Given a 2-qubit state $|\psi_i\rangle$ with Schmidt coefficients $\{1, a\}/(1 + a)$ characterized by the entanglement parameter $a \in (0, 1]$, and a 2-qudit state $|\phi_i\rangle$ with odd dimension $d \geq 3$, then there is entanglement transfer protocol using LU operations if and only if the final 2-qubit state $|\psi_f\rangle$ is characterized by the entanglement parameter

$$a^{d_1/d_2},$$

with d_1, d_2 any odd integers satisfying $1 \leq d_2 < d_1 \leq d$.
Conclusions and outlook

In the LOCC framework:

- Entanglement cannot be created or enhanced.
- Previously entanglement resource can be locally manipulated.
Conclusions and outlook

In the LOCC framework:

- Entanglement cannot be created or enhanced.
- Previously entanglement resource can be locally manipulated.

Entanglement can be transferred between specific couples of 2-qubit and 2-qudit states, with only LU operations.
Conclusions and outlook

In the LOCC framework:

- Entanglement cannot be created or enhanced.
- Previously entanglement resource can be locally manipulated.

Entanglement can be transferred between specific couples of 2-qubit and 2-qudit states, with only LU operations.

Applications:

- Entanglement distribution in qubit states networks
- Authentication protocols based on the specificity of the allowed transformations
Conclusions and outlook

In the LOCC framework:

- Entanglement cannot be created or enhanced.
- Previously entanglement resource can be locally manipulated.

Entanglement can be transferred between specific couples of 2-qubit and 2-qudit states, with only LU operations.

Applications:

- Entanglement distribution in qubit states networks
- Authentication protocols based on the specificity of the allowed transformations

Thank you for your attention!