Joint Annual Meeting of SPS and ÖPG 2019

Contribution ID: 246

Type: Poster

[174] Quantum Mechanical Simulations of sub-atomic resolution differential phase contrast imaging of magnetic materials

Wednesday 28 August 2019 19:28 (1 minute)

In recent years it has been shown that electric fields in solids can be imaged, with sub-atomic resolution, using scanning transmission electron microscopy (STEM) and differential phase contrast imaging techniques. Here we use a Pauli equation based multislice method [Phys. Rev. Lett. **116**, 127203 (2016)] to investigate the possibilities of imaging also microscopic magnetic fields with such STEM techniques. Considering an example of a hard ferromagnetic material FePt, We illustrate how sub-atomic resolution images of the microscopic magnetic fields can be extracted for thin samples and suitable electron beam conditions. We discuss related possibilities and limitations, and aspects regarding data interpretation.

Primary authors: EDSTRÖM, Alexander (ETH Zurich); Dr LUBK, Axel (Institute for Solid State and Materials Physics, TU Dresden); Dr RUSZ, Jan (Uppsala University)

Presenter: EDSTROM, Alexander (ETH Zurich)

Session Classification: Poster Session

Track Classification: Condensed Matter Physics (KOND)