1. Neutrinoless double-beta $(0\nu\beta\beta)$ decay in DARWIN

DARWIN Baseline Design

Its primary goal is to search for particle dark matter

- Dual-phase Time Projection Chamber (TPC).
- 40 t active of liquid xenon.
- Dimensions: 2.6 m diameter and 2.6 m height.
- Two arrays of photosensors (top and bottom).
- Low-background double-wall cryostat.
- Outer shield filled with water (14 m diameter).

Why Look for the 0νββ Decay with DARWIN?

DARWIN offers the possibility of looking for this rare process for FREE

- ¹³⁶Xe excellent candidate:
 - 8.9% abundance in natural Xe.
 - Q-value = 2.458 MeV
- DARWIN will have more than 3.5 t of active ¹³⁶Xe.
- Energy resolution of ~0.8% at 2.5 MeV
- Ultra-low background environment dominated by intrinsic sources

2. ¹³⁷Xe from cosmogenic activation underground

¹³⁷Xe: an Intrinsic Background

- ¹³⁷Xe beta decays with a Q-value of 4173 keV.
- The half-life is 3.82 min.
- Background uniformly distributed in the detector volume.

137Xe Production Underground

¹³⁷Xe is mainly produced when muon-induced neutrons are captured by ¹³⁶Xe.

IDENTIFICATION OF 137 Xe LIKE A BACKGROUND FOR $0\nu\beta\beta$ SEARCHES IN DARWIN

Patricia Sanchez-Lucas

— University of Zurich —

3. Simulations

Muon Flux at LNGS The muon flux underground

depends on the depth of the labFor the simulations we assume

■ 1 muon per hour and per m²

the depth of LNGS.

Neutron Simulations and ¹³⁷Xe Production Rate

Moun-induced neutron production rate from MUSIC and MUSUN [1]

Material	Neutron production	Mean neutron
	rates $[10^{-8} \text{ n/s/cm}^3]$	energy [MeV]
Polyethylene	0.15	34.3
Copper	0.47	14.8
Pb	1.04	6.8
Cryostat	0.39	8.3
Others	NA	NA
LXe	0.19	5.7

■ Simulation of neutrons in the different materials, propagate them and counting of ¹³⁷Xe isotopes produced by neutron capture

Simulation Details						
Material	Volume [m³]	Sim. Neutrons	¹³⁷ Xe Isotopes	¹³⁷ Xe Prod. Rate [atoms/kg/y]		
Cu-Shaping Rings	0.076	106	234 ± 15	(6.7 ± 0.4)×10 ⁻⁵		
Cryostat	1.076	106	89 ± 9	$(2.9 \pm 0.3) \times 10^{-4}$		
LXe (~50 ton)	16.976	106	252 ± 16	$(6.5 \pm 0.4) \times 10^{-3}$		
1] XENON100 Collaborat	10101		232 ± 10	(0.5 ± 0.4)^10°		

4. Results

¹³⁷Xe: Comparison with other experiments

Experiment	Location	Depth [m.w.e]	¹³⁷ Xe Production Rate [atoms/kg/year]
DARWIN	LNGS	3600	7.71×10 ⁻²
nEXO [2]	SNOLAB	6011	2.44×10 ⁻³
[2] nEXO Collaboration, Phys. Rev. C 97, 065503 (2018).			values normalized per kg of ¹³⁶ X

- Simulation of 10⁷ events of ¹³⁷Xe uniformly distributed in the detector.
- Normalization taking into account the previous production rates
- 3D-clustering 15 mm
- Single site selection

Contribution in the ROI of the 0vbb decay

Component	Events_ROI/(ty) 2435 - 2481 keV	
Detector materials in 6t FV	0.24 (73%)	
¹³⁷ Xe background	0.067 (20%)	
²²² Rn in LXe (0.1μBq/kg)	0.014 (4%)	
8B (v-e scattering)	0.011 (3%)	
136 Xe $(2\nu\beta\beta)$	0.00002 (<0.1%)	
	_	

The ¹³⁷Xe accounts for 20% of the total ER background in the scenario of 12t FV

