

SiPM detectors for the LHCb SciFi tracker

Swiss Physical Society annual meeting 2019

Zürich, 27/08/2019

Sebastian Schulte

The LHCb experiment

The LHCb experiment

- Designed for b and c physics
 - Vertex Locator:

excellent secondary vertices detection

RICH 1 & 2:

very good particle identification

Tracker:

tracking of charged particles

Calorimeter system:

detection of electrons, photons and hadrons

Muon chambers:

tracking of muons

LHCb data and results

Outstanding results from LHCb data:

- Observation of the Pentaquark states [Phys. Rev.Lett. 115 (2015) 072001]
- ▶ Observation of CP violation in charm decays [Phys. Rev. Lett. 122 (2019) 211803]
- ▶ Observation of the rare decay $B_s \rightarrow \mu^{\pm}\mu^{\mp}$ [Nature 522 (2015) 68-72]

Interesting results in lepton flavour universality (LFU) tests:

- Weak coupling of leptons is assumed to be universal
- New scenarios opened by recent hints of LFU anomalies [LHCb collaboration, Phys.Rev.Lett.122, 191801]

$$R_K = \frac{\mathscr{B}(B \to K\mu^+\mu^-)}{\mathscr{B}(B \to Ke^+e^-)}$$

$$0.01(\frac{1-R_K}{0.23})^2 \sim \frac{\mathcal{B}(B_S \to \mu^+ e^-)}{\mathcal{B}(B_S \to \mu^+ \mu^-)_{SM}}$$

LHCb SciFi tracker upgrade

Upgrade the detector for an integrated Luminosity of 50 fb⁻¹ for Run 3 & Run 4 :

- ▶ 40 MHz readout, software based trigger
- Current tracker technology (scilicon micorstrip and straw tubes) can not fulfil the requirements

Scintillating fibre tracker:

- Based on scintillating fibres arranged into fibre mats
- Detection of scintillating light with SiPMs

Detector design:

- 3 tracking stations with 4 layers of 12 modules (total 144 modules)
- Station midlayers rotated by 5°
- Each fiber mat is attached to 4 SiPMs

Silicon Photomultipliers

SiPMs for the SciFi

S.Schulte

SiPM characterisation

Device characterisation

- **➡** For the optimal operation point of the SiPMs, several parameters need to be studied:
 - Breakdown voltage (VBD)
 - Correlated Noise
 - Dark count rate (DCR)
- **Challenges:**
 - Radiation
 - Fast readout
 - Temperatur dependence
 - Geometry

Low light amplitude spectrum analysis

Output VBD is the voltage needed to trigger the avalanche

$$Q_A \sim \Delta V = V_{Bias} - V_{BD}$$

Measurement with multichannel charge sensitive amplifier ASIC (VATA64)

- Measure dark spectrum for pedestal determination
- Measure low photon spectrum with fast light pulses
- Determine gain from distance of the photon peaks
- ▶ Extrapolate V_{BD} from fit to 0 gain

Noise characterisation

- Random thermal generated pulses
- Proportional to the active area
- Increases with temperature and radiation

Correlated Noise

- Direct pixel-to-pixel cross-talk (DiXT)
- Delayed pixel-to-pixel cross-talk (DeXT)
- After-pulse (AP)

Analysis with an oscilloscope: [arXiv:1808.05775]

- Acquire a large number of dark pulses
- Analyse offline

SiPM waveform characterisation

[arXiv:1808.05775]

Pulse has fast and slow components:

- ▶ ⁷short < 1.0 ns dominated by acquisition bandwidth
- $ightharpoonup au_{long}$ characterises the device
 - determined with an exponential fit

➡ Pixel recovery time:

$$\tau_{rec} = 70 \text{ns} (H2017)$$

SiPM assembling

SiPM operation

Groups of 4 SiPMs are mounted in cold box and

operated with a common bias voltage supply:

- ▶ Grouping of devices with similar V_{BD}
 - Compensate differences of 500mV
- Similar total thickness

[LHCb collaboration, LHCb-INT-2016-019]

SiPM testing at EPFL

Devices are fully tested and characterised

1.Full electrical tests:

- Dead channel test
- ▶ Temperature sensor test
- V_{BD} measurement
- 2. Thickness measurement
- 3. Optical inspection

Low light amplitude spectrum analysis

Measurement with multichannel charge sensitive amplifier ASIC (VATA64)

Geometrical and optical inspection

Thickness measurement with optical focusing system under a microscope

- Mean deviation in thickness is evaluated:
 - In general a banana-like shape is observed
- \odot Devices with a deviation >100 μm are considered as bad

Optical inspection via microscope

Summary

Assembling summary:

- Measured all 5000 SiPMs
- ▶ 1.5% discarded due to optical imperfections
- ▶ 0.6% discarded due to electrical issues

- SiPMs fulfil all expectations
- Currently the SciFi modules are assembled
 - Preparation for the installation next year

Backup

SCIFI PERFORMANCE

Requirements:

- Hit detection efficiency higher than 98%
- Spatial resolution better than 100μm
- 40MHz readout without dead time
- Operation in radiation environment, fibres 3! neutron shielding) + 100 Gy ionising dose
- Low material with X/X0≤1% per detection lay

Quality assurance

Tests of the mechanical stability:

After 1000 cycles of displacement in y directions channels start to break

- Simulation of aging with thermal cycling
- Irradiation tests:
 - Increase of DCR from 10kHz at room temperature to 15MHz after annealing at -40°C

Silicon Photomultipliers

SiPMs are connected pixels of Avalanche Photodiodes (APDs)

Working principle:

- ightharpoonup Operated in Geiger-Müller mode with reverse bias voltage V_{Bias}
- An avalanche effect can be observed in the high electric field region

▶ The gain is proportional to the over-voltage:

$$Q_A \sim \Delta V = V_{Bias} - V_{BD}$$

▶ The avalanche is quenched by R_Q

 \mathbf{p}^{+} \mathbf{i} (\mathbf{p}^{-}) h^{+} e^{-} $E=h_{V}$ Multiplikation

[1] [https://hub.hamamatsu.com/us/en/technical-note/electrical-optical-tipm-properties/index.html]

SiPM design

SiPMs are connected pixels of Avalanche Photodiodes (APDs)

- SiPMs are affected by different noise sources:
 - Studie characteristics for optimised operation of the device
 - analyse the waveform

Scintillating fibers

The SciFi project

Scintillating fiber mats:

- Energy deposition by charged particles
- Emission of scintillating light
- El. signal is generated via Silicon Photomultipliers (SiPMs)

Fiber mat and modules

- 3 tracking stations with 4 layers of 12 modules (total 144 modules)
- Station midlayers rotated by $\pm 5^{\circ}$
- Each fiber mat is attached to 4 SiPMs

PDE Measurement

Measure photo-current in SiPM:

- Approximation with
 - Light current + dark current
 - Corrections for correlated noise

$$I = R_{\text{detection}} \cdot G \cdot e$$

$$PDE = QE_{PD} \cdot \frac{I_{light}}{G \cdot I_{PD}} \cdot \frac{A_{PD}}{A_{SiPM}}$$

Compare measured values with values from photodiode

Gain measurement

- Measuring gain with voltage or charge amplifier
- Gain determination via numerical integration of single dar or low light pulses

Alternatively:

- Gain determination via I_{dark} and DCR pulse frequency
- Method requires corrections for correlated noise

$$I_{dark} = DCR \cdot G \cdot e$$

SiPM characteristics

Photo detection efficiency (PDE):

tection efficiency (PDE): Quantum efficiency
$$PDE = \frac{\#\gamma_{det}}{\#\gamma_{inc}} = QE \cdot \epsilon_{geo} \cdot P_{01} \quad \text{AV probability}$$
 Fillfactor

Measured as a function of λ and ΔV

- The created charge from AV divided by the electron charge defines the gain:
 - Detector is a capacitor : $Q = C \cdot \Delta V$
 - Larger pixels have a higher capacity and therefore, higher gain
 - Typical values for a detector with (50 μm)²pixels: $10^6 e/ph \cdot 10^7 e/ph$

$$(\Delta V = 1 - 7V)$$

IV Measurment

- Determination of V_{BD}:
 - → V_{BD} is obtained via a linear fit

$$\left[\frac{dln(I)}{dV_{bias}}\right]^{-1} = I \cdot \left[\frac{dI}{dV_{bias}}\right]^{-1} = \frac{V_{bias} - V_{BD}}{\epsilon} \sim \Delta V$$

- Measurement of R_Q:
 - ➡ IV scan in forward direction
 - ightharpoonup Linear fit in $\Delta V \subseteq [-3.5, -1] \ V$

$$R_Q = N_{pixels} \cdot (dV/dI)$$

$$R_O \sim 470 - 570\Omega$$

[A. KUONEN,EPFL_TH8842.pdf]

Light yield and noise cluster rate

- ▶ Inject e- into fiber module (34 cm)
- ▶ 10-bit clustering algorithm
- Light yield is the most probable value of the cluster sum for a MIP
- Corrections for DCR

- Produced by correlate
- Random overlap dark pulses

(UONEN,EPFL_TH8842.pdf]

$$f_{NCR} = \frac{N_{NC}}{N_{ev}} \cdot 40 \text{MHz}$$

Quality assurance

Gluing tests:

- No failures under 7h with 3kg
- No failures under peak traction <10 kg</p>

Thermal chamber test (ageing):

- Electrical tests
 - No failures

Irradiation tests

8 detectors irradiated in Ljubljana (Slowenia):

- Neutrons with 3, 6 and $12 \cdot 10^{11} MeV n_{eq}/cm^2$
- ▶ 4 days of annealing at $40^{\circ}C$
- DCR measurement:
 - \rightarrow 15 MHz at 40°C after $6 \cdot 10^{11} MeV n_{eq}/cm^2$
 - → Batch 1: 12 MHz

