Dark sectors searches at high-intensity colliders Federico Leo Redi

Joint Annual Meeting of SPS and ÖPG, 26 - 30 August 2019, Zürich

Landscape today / 1

- There exist only three (four?) portals: •
 - The dark photon portal, thanks to which a new (generically) massiv photon and the Z-boson of the SM
 - 2. can also induce the mixing of the dark scalar with the SM Higgs
 - neutrinos (See Elena's talk)
 - Gravity... 4.
- Two strategies of searching for mediators at accelerators: **Not decaying** in the detector (signal proportional to <coupling>4) **Decaying** in the detector (signal proportional to <coupling>2)

Courtesy of Mike Williams

The **Higgs portal**, thanks to which a new dark scalar will interact with the Higgs of the SM. This portal

3. The **neutrino portal**, thanks to which a new dark fermion (a sterile neutrino) will mix with the SM

Dark sector far detectors at LHC / 1

- Long-lived particles (LLP) that decay in detector volume
- Fractionally charged particles directly interact in detector

LHCb detector / 1

- **LHCb** is a dedicated flavour experiment in the **forward region** at the LHC ($1.9 < \eta < 4.9$) (~1°-15°)
- Precise vertex reconstruction < 10 µm vertex resolution in transverse plane
- Lifetime resolution of ~ 0.2 ps for $\tau = 100$ ps
- **Muons** clearly identified and triggered: ~ 90% μ [±] efficiency
- Great mass resolution: e.g. couple MeV for J/psi (see bkup)
- **Low pt trigger** means low masses accessible. Ex: $p_{T\mu} > 1.5$ GeV \bullet

JINST3(2008)S08005 Int J Mod Phys A30(2015)1530022 JHEP 1511 (2015) 103

Muon system

Calorimeter

VELO

RICH

Tracking

LHCb detector / 2

LHCb detector / 3

- Precise knowledge of the location of the • material in the LHCb VELO is essential to reduce the background in searches for long-lived exotic particles
- LHCb data calibration process can align • active sensor elements, an **alternative approach** is required to fully map the VELO material
- **Real-time calibration** in \bullet Run 2
- Hardware trigger is still there, • and only ~10% efficient at low pT

Jet physics at LHCb / 1

- Efficiency above 90% for jets with p_T above 20 GeV
- Jets reconstructed both online and offline!
- b and c jet tagging
- Require jets with a secondary vertex reconstructed close enough
- Light jet mistag rate < 1%, $\varepsilon_b \sim 65\%$, $\varepsilon_c \sim 25\%$
- SV properties (displacement, kinematics, multiplicity, etc) and jet properties combined in two BDTs
 - **BDT_{b|c}** optimised for b versus c discrimination
 - BDT_{bc|udsg} optimised for heavy flavour versus light discrimination

Higgs \rightarrow LLP $\rightarrow \mu$ +jets / 1

- Massive LLP decaying $\rightarrow \mu + qq (\rightarrow jets)$ ●
- Single displaced vertex with several tracks and a high p_T muon; based on **Run-1** dataset
- Production of LLP could come e.g. from Higgs • like particle decaying into pair of LLPs
- m_{LLP}=[20; 80] GeV and τ_{LLP}=[5; 100] ps
- Background dominated by **bb** ullet
- No excess found: result interpreted in various • models

Higgs \rightarrow LLP $\rightarrow \mu$ +jets / 3

Bf(Higgs→LLP+LLP) < 2 %

LHCb-CONF-2018-006

Bf(Higgs→LLP+LLP) < 0.5 %

Higgs \rightarrow LLP \rightarrow jet pairs / 1

- Massive **LLP** decaying \rightarrow bb+bb • with bb \rightarrow jets
- Single displaced vertex with two associated tracks; based on **Run-1** dataset
- Production of LLP could come e.g. from Higgs • like particle decaying into pair of LLPs (e.g. π_V)
- m_{πv}=[25; 50] GeV and τ_{πv}=[2; 500] ps
- Background dominated by **QCD** ●
- No excess found: result interpreted in various • models D

Eur. Phys. J. C77 812

- Higgs-like boson decaying $\rightarrow \mu \tau$ charged-lepton flavour-violating (CLFV)
- Analysis is separated into four channels
- **m_H=[45; 195] GeV** and **minimal flight** distance (impact parameter) of the reconstructed candidate is imposed

Searching in the Y mass region / 1

- Other light spin-0 particles in which LHCb can do ۲ well are light bosons from pp; only Run 1
- Spin-0 boson, ϕ , using Run 1 **prompt** $\phi \rightarrow \mu^+\mu^$ decays, have been searched for
- Use **dimuon** final states: •
 - Access to different mass window w.r.t $\gamma\gamma$ or $\tau\tau$ • searches in 4π experiments
- Done in **bins of kinematics** ($[p_T, \eta]$) to maximise • sensitivity
- Precise modelling of Y(nS) tails to extend search ۲ range as much as possible
- Mass independent efficiency (uBDT) •

Federico Leo Redi | <u>École polytechnique fédérale de Lausanne</u> | 13

JHEP 1809 (2018) 147

Searching in the Y mass region / 2

- Search for dimuon resonance in $m_{\mu\mu}$ from 5.5 to 15 GeV (also between Y(nS) peaks) •
- No signal: limits on σ•BR set on (pseudo)scalars as proposed by **Haisch** & **Kamenik** [1601.05110] •
- First limits in 8.7-11.5 GeV region elsewhere competitive with CMS ۲
- Interpreted as a search for a scalar produced through the SM Higgs decay •

JHEP 1809 (2018) 147

Codex-b / 1

- Distance is only ~ 4 bunch crossing times for relativistic objects: Integrate CODEX-b into the DAQ & readout, and treat as LHCb sub-detector
- Identification and at least partial reconstruction of the LLP event
- Fiducial volume ('the box') is 10 × 10 × 10 m; angular acceptance 1%
- Absorb neutral hadrons in shield (irreducible background)
- Veto muon-induced backgrounds with muon veto + front face of the detector (reducible background)
- Precision timing and spatial resolution, 100 ps or futuristic 50 ps resolution possible required for LLP mass reconstruction

Phys.Rev. D97 (2018) no.1, 015023

Codex-b/2

- Large theory uncertainties for • $m_{\Phi}>1$ GeV
- Single parameter portal: Higgs-• scalar mixing angle, θ , controls production rate and lifetime
- LHCb information must be used to • reach prospected limits

 10^{-12}

 $\sin^2 \theta$

CERN-LHCC-2018-030

Visible (SM) dark photons / 1

- A: Bump hunts, visible or invisible
- **B**: Displaced vertex searches, short decay ϵ^2 lengths
- C: Displaced vertex searches, long decay lengths

Searching for Dark Photons / 1

- Search for dark photons decaying into **a pair of muons** ullet
- Used **1.6 fb⁻¹** of 2016 LHCb data (13 TeV) •
- Kinetic mixing of the dark photon (A') with off-shell photon • (γ^*) by a factor ε :
 - A' inherits the production mode mechanisms from γ_* •
 - A' $\rightarrow \mu^+\mu^-$ can be **normalised** to $\gamma^* \rightarrow \mu^+\mu^-$
 - No use of MC \rightarrow no systematics from MC \rightarrow fully • data-driven analysis
- Separate y^{*} signal from background and measure its fraction •
- Prompt-like search (up to 70 GeV/c²) \rightarrow displaced search ullet(214-350 MeV/c²)
 - A' is long-lived only if the mixing factor is really small •

Search for Dark Photons / Prompt

- No significant excess found exclusion regions at 90% C.L. ۲
- First limits on masses above 10 GeV & competitive limits below 0.5 GeV • 10^{-3} 10^{-4} າ 10 10^{-6} 10⁻⁷

Phys. Rev. Lett. 120, 061801 (2018)

Search for Dark Photons / Displaced

- Looser requirements on muon transverse momentum ۲
- Material background mainly from photon conversions •
- Isolation decision tree from $B^0s \rightarrow \mu^+\mu^-$ search ۲
 - Suppress events with additional number of tracks, i.e. µ from b-hadron decays
- Fit in **bins of mass and lifetime** use consistency of decay • topology χ^2
- Extract p-values and confidence intervals from the fit •
- No significant excess found small parameter space region ۲ excluded
- First limit ever not from beam dump •

Search for Dark Photons / Results

for low masses, so plan quick turn around on 2017 dimuon search - then onto electrons.

Phys. Rev. Lett. 120, 061801 (2018)

The 2016 dimuon results are consistent with (better than) predictions for prompt (long-lived) dark photons as discussed in [1603.08926]. We implemented huge improvements in the 2017 triggers 90% CL exclusion regions on $[m(A'), \varepsilon^2]$

Faser / 1

- Huge forward π rate (~ 10¹⁵) in FASER acceptance
- Large suppression (ϵ^2) in $\pi \rightarrow A' X$ but substantial rates of A' in acceptance
- Multi-TeV LLP produced at ATLAS IP; • 480 m to FASER, including 100 m of concrete
- Decay within 1.5 m decay volume to charged • particle pair, e.g. e+e-
- Oppositely charged tracks separated by spectrometer B field
- Silicon strip tracker (from ATLAS) to measure • charged track trajectory
- EM calorimeter (from LHCb) to measure energy, e vs. µ ID

CERN-LHCC-2018-030

Faser / 2

- FASER probes new parameter space with just 1 fb-1 starting in 2021
 - FASER 2 larger volume (R = 1 m, L = 5 m) and HL-LHC Lumi •

CERN-LHCC-2018-030

Conclusions

- The search for dark matter and dark sectors at collider experiments is a broad and growing field ۲ both at existing and at feature facilities and experiments
- Important effort should also be spent in **exploiting existing experiments** further •
- These searches can lead to major milestones in our understanding of the shortcomings of the • Standard Model
- Specific mass scale of NP unknown, DM points to a dark sector of particles not interacting • through the known SM forces and therefore only feebly-coupled to the SM
- [...] More than for the past 30 years, future HEP's progress is to be driven by **experimental** • exploration, possibly renouncing/reviewing deeply rooted theoretical bias(es) [M. Mangano, emphasis added]

2019	2020	2021	2022	2023	2024	2025	202	6	2027	2028	2029	2030	2031	2032	
LS2		RUN III			LS3			RUN IV			LS4		RUN		
		L = 2e33						L = 2e33; 50 fb ⁻¹					300	fk	

- •

Thanks Federico Leo Redi

LHCb detector / 1bk

LHCb detector / 2bk

- Lower luminosity (and low pile-up) •
 - ~1/8 of ATLAS/CMS in Run 1 •
 - ~1/20 of ATLAS/CMS in **Run 2** \bullet
- Hardware L0 trigger to be removed •
- **Full real-time** reconstruction for all particles • available to select events (since 2015)
 - **Real-time reconstruction** for all • charged particles with $p_T > 0.5$ GeV
 - We go from 1 TB/s (post zero suppression) • to 0.7 GB/s (mix of full + partial events)
- LHCb will move to a **trigger-less readout** • system for LHC Run 3 (2021-2023), and process
 - 5 TB/s in real time on the CPU farm

LHCb detector / 3bk

Efficiency-corrected dimuon mass distributions for (left) $\sqrt{s} = 7 \,\text{TeV}$ and Figure 1: (right) $\sqrt{s} = 8 \text{ TeV}$ samples in the region $3 < p_T < 4 \text{ GeV}/c$, 3.0 < y < 3.5. The thick dark yellow solid curves show the result of the fits, as described in the text. The three peaks, shown with thin magenta solid lines, correspond to the $\Upsilon(1S)$, $\Upsilon(2S)$ and $\Upsilon(3S)$ signals (left to right). The background component is indicated with a blue dashed line. To show the signal peaks clearly, the range of the dimuon mass shown is narrower than that used in the fit.

Searching for Dark Photons / 1bk

- Suppressing misidentified (nonmuon) backgrounds and reducing the event size enough to record the prompt-dimuon sample
- Accomplished these by ۲ moving to **real-time** calibration in Run 2
- Hardware trigger is still • there, and only ~10% efficient at low pT

Figure 8: Example $\min[\sqrt{\pi}_{D}(\mu^{+})]^{-1}$ distributions with fit results overlap

Searching for Dark Photons / 2bk

- displaced searches at LHCb
- long-lived exotic particles
- the VELO material

arXiv:[1803.07466]

$H \rightarrow \mu \tau$ decays / 1bk

from top to bottom: $\mu \tau_e$, $\mu \tau_{h1}$, $\mu \tau_{h3}$, $\mu \tau_{\mu}$

from L to R: $\mu \tau_{\mu}$, $\mu \tau_{e}$, $\mu \tau_{h1}$, $\mu \tau_{h3}$,

Eur.Phys.J. C78 (2018) no.12, 1008

 h^{-}

Neutrino detector at TI18 and/or TI12 / 1bk

- Charged current neutrino-nucleon cross ۲ section measurements show a gap in measurements
- First detection of collider neutrinos in far forward location, where high-energy neutrino flux is concentrated
- Cross-section measurements of all • flavours in unexplored energy region
- Search for new physics effects in high-• energy neutrino interactions

Higgs→LLP→jets pairs / 1bk

Higgs→LLP→jets pairs / 2bk

Bf(Higgs $\rightarrow \pi_V + \pi_V) < 20 \%$

LHCb-CONF-2018-006

Bf(Higgs $\rightarrow \pi_V + \pi_V) < 2\%$

Introduction / 1bk

- Naturalness does not seem to be a **guiding principle** of Nature
- There are some anomalies in flavour physics which (if true) seem again to point out that our theory prejudice was wrong
- We should therefore not forget that we have a 2D problem (Mass VS Coupling)
- Low coupling → Long Lived

Explored

strength

Interaction

 $C_{I}F$

Unexplored

Energy scale

Intensity frontier: Flavour physics, lepton flavour violation, electric dipole moment, **dark sector**

Landscape today / 1bk

- •
- In this talk, I will concentrate on **dark sector** and related physics searches. •
- **Landscape**: LHC results in brief: •
 - Direct searches for NP by ATLAS and CMS have not been successful so far •
 - complete HL-LHC data set has been delivered so far
 - NP discovery **still may happen**!
 - **LHCb** reported intriguing hints for the violation of lepton flavour universality •
 - In $b \rightarrow c\mu\nu / b \rightarrow c\tau\nu$, and in $b \rightarrow se+e- / b \rightarrow s\mu+\mu-$ decays •

The Intensity frontier is a **broad** and **diverse**, yet **connected**, set of science opportunities: heavy quarks, charged leptons, hidden sectors, neutrinos, nucleons and atoms, proton decay, etc...

• Parameter space for popular **BSM** models is **decreasing rapidly**, but only < 5% of the

Possible evidence of **BSM** physics if substantiated with further studies (e.g. BELLE II)

