Performance of the Belle II Silicon Vertex Detector Christoph Schwanda (HEPHY Vienna)

Belle T

Joint Annual Meeting of the Swiss and Austrian Physical Societies August 26-30, 2019, Zurich University, Switzerland

HARDWARE OVERVIEW

SuperKEKB and Belle II Experiment

- SuperKEKB collider at KEK
 - e^+e^- collider with \sqrt{s} of 10.58 GeV (= $M_{Y(4S)}$)
 - Asymmetric beam: e⁺ 4 GeV , e⁻ 7 GeV
 - World-highest designed luminosity: $L = 8.0 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$
- Belle II experiment
 - Intensity frontier experiment at SuperKEKB to discover and understand physics beyond the SM (BSM).
 - Precise determination of the decay vertices and low-momentum tracking are essential to perform the BSM search.

KEK in bird's-eye view

Belle II Vertex Detectors

- PiXel Detector (PXD)
 - Based on DEPFET pixels see previous talk
- Silicon Vertex Detector (SVD)
 - Double-sided silicon strip detectors (DSSDs)

– VXD requirements

- •Fast to operate in high background environment
- •Better resolution at IP to compensate reduction of boost wrt. Belle I
- •Radiation hard (up to 100 kGy)
- •Self-tracking capable to track particles down to 50 MeV in $\ensuremath{p_{\text{T}}}$

Components of the Belle II SVD

SVD Silicon Sensor

Strip numbers and pitches

• 3 types of DSSD sensors

Sensors	Rectangular (Large)	Rectangula r (Small)	Trapezoidal
# of <i>p</i> -strips	768	768	768
<i>p</i> -strip pitch	75µm	50µm	5075µm
# of <i>n</i> -strips	512	768	512
<i>n</i> -strip pitch	240µm	160µm	240µm

Rectangular sensor (HPK)

Trapezoidal sensor (Micron)

Front-End Readout ASIC

APV25 chip

APV25 chips in ladder

- APV25 chip
 - A high background in Belle II requires, short signal shaping time and a good radiation hardness.
 - APV25 chip is a suitable solution for SVD.
 - Originally developed for CMS.
- APV25 Specification
 - # of input channels: 128 ch.
 - Shaping time: 50nsec
 - Radiation hardness: > 1MGy
- Chip-on-Sensor (see next slide)
 - Thinned to 100µm thickness for the material budget reduction.
 - Max. heat dissipation: 0.4W
 - \rightarrow Necessity of cooling

Chip-On-Sensor Concept

ORIGAMI flex (Si sensor is under the flex)

Flex circuit (ORIGAMI flex) is glued on sensor *n*-strip surface with an electrical/thermal-isolation foam.

 APV25 are placed on the ORIGAMI flex to minimize the analog path length (capacitive noise).

Sensor strips and ORIGAMI flex are connected with Al wire-bonding (φ25μm).

Sensor under ORIGAMI (n-strips)

Sensor from other side (p-strips)

Wire bonding with Al wires.

FADC Readout System

SVD COMMISSIONING

SVD assembly and commissioning

- +X half mount was completed in Feb 2018
- -X half mount finished in Jul 2018
- From Jul to Sep 2018 the two half shells were operated in a dry box in Tsukuba experimental hall (SVD commissioning)
- End of Sep/beginning of Oct 2018 the SVD was moved into the VXD clean room, mounted on the PXD

SVD +X completion (Feb 2018)

SVD -X completion (Jul 2018)

Completed VXD detector (Oct 2018)

2018-10-04 23.00 JS

SVD commissioning (Jul-Sep 2018)

- The two SVD halves were operated from Jul to Sep in Tsukuba B4
- Cosmic data and special background runs have been taken to understand the system prior to the start of data taking

First cosmic event in SVD +X (Jul 10, 2018)

First cosmic event in full SVD (Aug 17, 2018)

SVD commissioning – SNR, cluster energy

 Low energy peak due to noise cluster

- We have collected about 30 x 10⁶ cosmic events with both SVD halves
- The SNR is larger than 25 for N side, slightly lower on P side due to the longer strips and larger capacitance load to the preamplifier

SPRING 2019 RUN ("PHASE 3", EXP. 7/8)

Integrated luminosity by the end of the first run (March to June 2019)

• Slightly below 7/fb, about half of the original projection

Instantenous luminosity history

> 10³⁴/cm²/s was achieved in the very last days

SVD operation in spring 2019

- SVD operation has been smooth and stable throughout the spring run, no major issue has been encountered
- Excellent performance
 - Cluster efficiency above 99% in L3-L6 and on both n- and p-sides (see following slides)
- SVD background situation
 - Currently the occupancy is ~<0.3% in physics runs</p>
 - Limit for good tracking performance is 2-3%

Signal-to-noise ratio for SVD clusters included in tracks (exp. 7)

Energies of SVD clusters included in tracks (exp. 7)

SVD sensor efficiency (exp. 8)

- Sensor efficiency is calculated as the fraction of times a cluster is found within ±0.5 mm from the extrapolated position of tracks on the sensor.
- Forward and Backward sensors have efficiency slightly higher than barrel sensors.
- On average, efficiency is above 99% for most of the sensors, with the exception of a L3 sensor that had a read-out chip masked.

efficiency	r -φ	Z
Layer 3	(99.75±0.02)%	(98.46±0.05)%
Layer 4	(99.66±0.04)%	(99.37±0.06)%
Layer5	(99.62±0.06)%	(99.43±0.08)%
Layer 6	(99.30±0.10)%	(99.30±0.10)%

Summary

- SVD construction and commissioning
 - After years of construction and preparation, SVD assembly was completed in Feb 2018 (+X half shell) and Jul 2018 (-X half shell)
 - From Jul to Sep 2018, the entire SVD was operated for the first time outside of Belle II (SVD commissioning)
 - Finally, the detector was successfully combined and installed in Belle II in Oct to Dec 2018
- Spring 2019 run ("phase 3")
 - SVD operated successfully throughout Belle II's first physics run from Mar to Jul 2019
 - All sensors worked as expected, with efficiencies above 99% and Signal-to-Noise Ratios above 15
 - No major issues were observed in SVD during the first period of data taking

SKB parameters

	July 1 08:58	June 26 14:09	June 20 19:10
β _× *(mm)	80	80	100
β _y *(mm)	2	2	3
I LER / I HER (m A)	799.7 / 821.5	396 / 398	494.7 / 496.1
nь	1576	789	1576
Ib LER / Ib HER (m A)	0.507 / 0.521	0.502 / 0.504	0.314 / 0.317
ξ y ler / ξ y her	0.0355 / 0.0197	0.0389 / 0.0220	0.0335 / 0.0189
L _{sp} x 10 ³⁰	29.5	30.7	21.5
L x10 ³²	122.94	61.25	47.85

From Belle to Belle II

CsI(TI) EM calorimeter: waveform sampling electronics, pure CsI for endcaps RPC μ & K_L counter: scintillator + Si-PM for end-caps

4 layers DS Si vertex detector → 2 layers PXD — (DEPFET) + 4 layers DSSD WHEPHY

> Central Drift Chamber: smaller cell size, long lever arm

Time-of-Flight, Aerogel Cherenkov Counter → Time-of-Propagation (barrel), prox. focusing Aerogel RICH (forward)

Ladder Anatomy (L6 ladder)

Snapshot – the "Origami" Concept

The backside signals are transmitted to the APV25 via <u>bent</u> (and glued) flex circuits.

CO2 Cooling for Ladders

Necessity of cooling

cooling pipe Softtherm

Cooling pipes attached

on ladders.

APV25 chips

- SVD total heat dissipation from all APV25 chips can be 700W in max. Softtherm 86/125
- 2-phase (liquid and gas mixture) CO2 cooling system
 - Efficient and low mass cooling
 - Simple control of coolant temperature (only with pressure)
 - Small pressure loss in tubes
- Thin stainless tube (OD:1.6mm, thickness:0.1mm) is employed.
 - Less material budget

