

Review of flavour anomalies

A. Mauri

SPS & ÖPG Annual Meeting 27-31 Aug 2019, Zurich

What is flavour?

- Flavour is the property that distinguishes the various fermions of the Standard Model
- In the SM, leptons and quarks

 naturally fit into three generations
 of doublets based on the way they
 interact with the weak force
- Flavour physics studies the
 properties and interactions of these
 particles

Why study flavour?

Flavour puzzle

- 20 free parameters in the flavour sector
 - only 5 to characterize gauge interaction and boson masses
- why 3 generations?
- what is the origin of their mass hierarchy?
- what is the origin of hierarchies in the quark mixing?
 - * V_{CKM} hierarchical and nearly diagonal

Search for New Physics (NP)

VS

DIRECT

- Look for direct production on new particles in high energy collisions (ATLAS, CMS, ...)
 - ✓ Unambiguous observation (of New Physics effects)
 - ➤ Mass reach limited by the energy of the collision

INDIRECT

- Look for NP effects in well predicted flavour observables (LHCb, Belle, ...)
 - ✓ Possibility to reach much larger energy scales
 - × Require very clean theoretical predictions

Search for New Physics (NP)

The flavour anomalies...

Flavour anomalies

- 1. $b \rightarrow s\ell\ell$ processes
 - Rate and angular distributions of exclusive $b \rightarrow s\mu^+\mu^-$ decays
 - Relative rates of $b \to s\mu^+\mu^-$ and $b \to se^+e^$ decays (R_K(*))

NEUTRAL CURRENT

- 2. $b \to c \tau^- \bar{\nu}_\tau$ decays
 - Relative rates of $b \to c\tau^- \bar{\nu}_{\tau}$ versus decays with e/μ (R_D(*))

Why rare *b* decays?

 $b \rightarrow s\ell\ell$ transitions are powerfull probes of

- FCNC proceeding via loop diagrams only ("penguin" or box)
- suppressed in the SM, more sensitive to New Physics

 $\begin{array}{c} & & \ell^- \\ LQ & & \ell^+ \\ & & s \end{array}$

NP

New particles could enhance/suppress decay rates, modify angular distributions, introduce new sources of CP violation

A. Mauri (UZH)

Theory formalism

Low-energy processes (B decays) can be described by an effective theory:

$$\mathcal{H}_{eff} = \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i} \mathcal{O}_i \mathcal{O}_i$$

Wilson coefficients
(*effective couplings*) Local operators

 New Physics can contribute to different Wilson coefficients (or introduce new operators) depending on its Lorentz structure

$$\mathcal{C}_i = \mathcal{C}_i^{\mathrm{SM}} + \mathcal{C}_i^{\mathrm{NP}}$$

$$\sum_{k=1}^{n} \sum_{k=1}^{n} \sum_{k$$

 $B_{s,d} \rightarrow \mu^+ \mu^-$ decays

- One of the golden channel to look for NP
 - helicity suppressed
 - $B(B_s^0 \to \mu^+ \mu^-) \propto |C_{10} C_{10}'|^2$
- Latest LHCb result uses Run1 + 1.4 fb⁻¹ (Run2)

 $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.0 \pm 0.6 \,{}^{+0.3}_{-0.2}) \times 10^{-9} \quad \textbf{7.8\sigma}$ $\mathcal{B}(B^0 \to \mu^+ \mu^-) < 3.4 \times 10^{-10} \text{ at } 90\% \text{ CL} \quad \textbf{1.9\sigma}$

- Precise SM prediction C. Bobeth et al. PRL 112, 101801 (2014) $BR(B_s \to \mu^+ \mu^-)_{SM} = (3.65 \pm 0.23) \times 10^{-9}$ $BR(B^0 \to \mu^+ \mu^-)_{SM} = (1.06 \pm 0.09) \times 10^{-10}$

 $B_{s,d} \rightarrow \mu^+ \mu^-$ decays

- One of the golden channel to look for NP
 - helicity suppressed
 - $B(B_s^0 \to \mu^+ \mu^-) \propto |C_{10} C_{10}'|^2$
- * Latest LHCb result uses Run1 + 1.4 fb⁻¹ (Run2) $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.0 \pm 0.6 \substack{+0.3 \\ -0.2}) \times 10^{-9}$ 7.8 σ $\mathcal{B}(B^0 \to \mu^+ \mu^-) < 3.4 \times 10^{-10}$ at 90% CL 1.9 σ

 $B_{s,d} \rightarrow \mu^+ \mu^-$ decays

Mai

υ

 $\iota^+ \nu_{\mu}$

ัน_

/leV/

6000

u'u

fit

Iυ

One of the golden channel to look for NP

- helicity suppressed
- ▷ $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) \propto |C_{10} C'_{10}|^2$
- 4/17, $\mathcal{B}(\mathcal{B} \oplus \mathcal{H}^+ \mu \mu \mu) = (3394 \oplus 010^{+103} \oplus 020) = 0.2010 \oplus 0.2010 \oplus$ $\mathcal{B}(B^0 \to \mu^+ \mu^-) < 3.4 \times 10^{-10} \text{ at } 90\% \text{ CL}$ **1.9** σ
- First measurement of the effective lifetime
 - provides complementary constraints on NP models $\tau_{eff}(B_s \to \mu^+ \mu^-) = (2.04 \pm 0.44 \pm 0.05) \text{ ps}$
 - ▶ $\tau_{eff}(B_s^0 \to \mu^+ \mu^-) = (2.04 \pm 0.44 \pm 0.05) \text{ ps}$

 $b \rightarrow s\ell^+\ell^-$ decays

In experiments, we observe hadronic decays, not the quark-level transition

- Needs to compute hadronic matrix elements
 - Non-perturbative QCD, difficult to compute

Branching fractions too low in $b \rightarrow s\mu^+\mu^-$?

Measured BR are consistently lower than predicted in SM

though SM suffers from large uncertainties...

Form factor "free" observables

Theory uncertainty

104]

 Both branching ratios and P₅ discrepancies can be explained with a shift in C₉ (or C₉ and C₁₀) JHEP 05, 043 (2013) PRD 93, 014028 (2016) JHEP 06, 116 (2016)

Lepton Flavour Universality (LFU) test in rare decays

LFU in rare decays

* SM implies *Lepton Flavour Universality*

- * Different lepton generations **couple identically** to SM processes
- * Only difference mass \rightarrow phase space
- * Ratios of the form

$$R_{K^{(*)}} = \frac{\mathcal{B}(B \to K^{(*)}\mu^{+}\mu^{-})}{\mathcal{B}(B \to K^{(*)}e^{+}e^{-})} = 1 \pm \mathcal{O}(10^{-2}) \longrightarrow \text{Free from QCD}$$

$$\text{uncertainties}$$

Lepton non-universality would be a clear sign of NP

B

* LFU experimentally measured as double ratio:

$$R_{K^{(*)}} = \frac{\mathcal{B}(B \to K^{(*)}\mu^{+}\mu^{-})}{\mathcal{B}(B \to K^{(*)}J/\psi(\to \mu^{+}\mu^{-}))} / \frac{\mathcal{B}(B \to K^{(*)}e^{+}e^{-})}{\mathcal{B}(B \to K^{(*)}J/\psi(\to e^{+}e^{-}))}$$

most of the systematics cancel out

- * Status LHCb Run1:
 - $R_K = 0.745^{+0.090}_{-0.074} (\text{stat}) \pm 0.036 (\text{syst})$ • This year updated with 2015 & 2016 datasets (roughly double the statistics)
 - $R_{K^{*0}} = \begin{cases} 0.66^{+0.11}_{-0.07} \pm 0.03 & \text{for } 0.045 < q^2 < 1.1 \text{ GeV}^2 \\ 0.69^{+0.11}_{-0.07} \pm 0.05 & \text{for } 1.1 < q^2 < 6.0 \text{ GeV}^2 \end{cases}$

Efficiency calibration

- * Key ingredients:
 - Yields determined from a fit to the invariant mass
 - Efficiency computed with MC simulation calibrated on control channels in data
- * Efficiency calibration makes extensive use of $B^+ \to K^+ J/\psi(\ell^+ \ell^-)$ and $B^+ \to K^+ \psi(2S)(\ell^+ \ell^-)$ decays
 - * resonant and non-resonant modes are separated in q^2
 - however, good overlap in the variables relevant for detector response

R_K measurement

• Simultaneous fit to $m(K\mu\mu)$ and m(Kee) to extract R_K

Phys. Rev. Lett. 122, 191801 (2019)

R_K measurement: overview

• $\mathscr{B}(B^+ \to K^+ e^+ e^-)$ compatible with SM for all years

A. Mauri (UZH)

LFU test in $B^0 \to K^* \ell^+ \ell^-$ decays

Impact on global fits

- ♦ After R_K update LFU measurements slightly moved away from common solution with $b \rightarrow sll$ anomalies
 - ▶ NP universal contribution to C₉...?

What about $b \rightarrow dll$ transitions?

- * $b \rightarrow dll$ is **Cabibbo suppressed** respect to $b \rightarrow sll$ (~25 times smaller)
- * Similar but complementary information
 - ✤ allow V_{td} / V_{ts} measurement
 - test Minimal Flavour Violation hypothesis
- * Very rare processes, on the brink of observation

Evidence for the decay $B_s^0 \to \overline{K}^{*0} \mu^+ \mu^-$

- equivalent to $B^0 \to K^* \mu^+ \mu^-$
- + First evidence: 3.4σ with 4.6 fb⁻¹
 - * 38 ± 12 candidates $(4200 \ B^0 \to K^* \mu^+ \mu^-)$
- $\mathcal{B} = (2.9 \pm 1.0 \pm 0.2 \pm 0.3) \times 10^{-8}$

Too little data to say anything about q^2 or angular distributions

Near future for rare decays

Updates of:

- $\blacktriangleright R_{K^*} (+ Run2)$
- ▶ R_K (+ 2017 & 2018)
- ▶ $B^0 \to K^* \mu^+ \mu^-$ angular analysis

New measurements:

- New ratios: $R_{(K\pi\pi)}$, R_{ϕ} , etc.
- ▷ $B^0 \to K^* e^+ e^-$ angular analysis
 - ▶ non-LFU angular asymmetries $\Delta P'_i$
- Direct measurements of Wilson coefficients (C₉ & C₁₀) from data
 - ▶ via amplitude analysis of $B^0 \to K^* \mu^+ \mu^-$

Belle - PRL 118 (2017) 11 111801

Flavour anomalies

- 1. $b \rightarrow s\ell\ell$ processes
 - Rate and angular distributions of exclusive $b \rightarrow s\mu^+\mu^-$ decays
 - ★ Relative rates of $b \rightarrow s\mu^+\mu^-$ and $b \rightarrow se^+e^$ decays (R_K(*))

NEUTRAL CURRENT

CHARGED CURRENT

- 2. $b \rightarrow c \tau^- \bar{\nu}_{\tau}$ decays
 - Relative rates of $b \to c\tau^- \bar{\nu}_{\tau}$ versus decays with μ (R_D(*))

τ reconstruction

- **Leptonic**: Br ~17 %

 - ▶ $\tau \rightarrow e \nu_e \nu_\tau$ → only at *B* factories

Decay	B (%)	
$ au^- o \pi^- \pi^0 \ u_ au$	25.49 ± 0.09	1-prong decays only at B factories
$ au^- ightarrow \pi^- u_ au$	10.82 ± 0.05	/ 1-prong decays, only at D factories
$ au^- ightarrow \pi^- \pi^+ \pi^- u_ au$	9.02 ± 0.05	2 propa docava oply at IUCh
$ au^- ightarrow \pi^- \pi^+ \pi^- \pi^0 \ u_ au$	4.49 ± 0.05	> 5-prolig decays, only at LHCD

▶ requires an other decay channel with similar final state, e.g. $B \to D^* \pi \pi \pi$

A. Mauri (UZH)

"Muonic" VS "hadronic" R_{D*}

muonic

2.1σ greater than SM

$R_D(*)$ combination

* After Moriond 2019 tension with SM is reduced from 3.8 to 3.1 σ

More measurements ...

- What about B_c decays?
 - ▶ test of LFU in $b \rightarrow c\ell \nu$ decays with different spectator quark

$$R_{J/\psi} = \frac{\mathcal{B}(B_c \to J/\psi \tau \nu)}{\mathcal{B}(B_c \to J/\psi \mu \nu)} \stackrel{\mathsf{SM}}{=} [0.25, 0.28]$$

 $R_{J/\psi}^{\text{LHCb}} = 0.71 \pm 0.17 \pm 0.18$

Large interval due to form factor uncertainties

PRD 120 (2018) 121801

 2σ above the SM

Near future — several measurement in the pipeline:

- Simultaneous measurements of $R(D^*)$ & $R(D^0)$ and $R(D^*)$ & $R(D^+)$
- New measurement of $R(\Lambda_c)$, $R(D_s)$, etc.
- Updates with Run2

LHCb Upgrades = new era of precision measurements

Projected sensitivity for LHCb future upgrades

Physics of the HL-LHC, WG4 Flavour [arXiv:1812.07638]

Intriguing pattern of anomalies in neutral and charged currents transitions

- measurements by LHCb, Babar and Belle
- still need larger statistics to understand if these anomalies are genuine sign of physics beyond the SM
- more results will come from LHCb Run2 analyses

Thank you!

The LHCb detector

A. Mauri (UZH)

Collected datasets

LHCb Integrated Recorded Luminosity in pp, 2010-2018

- Run1 LHCb collected 1+2 fb⁻¹
 of data in 2011+2012
- Run2 LHCb collected 6 fb⁻¹ of data between 2015 and 2018 (roughly twice b-meson per fb-1 due to increased √s)

Fighting the charm loop at experimental level

- Several attempts to disentangle short-distance (WCs) from long-distance (cham loop) contributions
 - Parametrizing charmonia resonances as sum of Breit-Wigner
 - including tails away from resonances, each with magnitude and phases
 - Parametrizing charmonia resonances as polynomials

EPJ C77 (2017) 161

Phases in $B^+ \rightarrow K^+ \mu \mu$

- * $B^+ \to K^+ \mu \mu$ decays present simpler phenomenology compared to $B^0 \to K^{*0} \mu \mu$ (*K*⁺ is a scalar)
- Fit to $m(\mu\mu)$ to determine the interference between "rare mode" and resonances
- 4 solutions equally compatible with data
 - * J/ ψ -"rare mode" phase difference compatible with $\pm \pi/2$
 - interference far from the pole mass is small

Cross-check #1: $r_{J/\psi}$

- To ensure efficiencies are under control, check $r_{J/\psi} = \frac{\mathscr{B}(B^+ \to K^+ J/\psi(\mu^+ \mu^-))}{\mathscr{B}(B^+ \to K^+ J/\psi(e^+ e^-))} = 1$ 4.
 - Very stringent check:
 - Single ratio direct control of efficiencies

 $r_{J/w} = 1.014 \pm 0.035 \text{ (stat+syst)}$

Checked compatibility of $r_{J/w}=1$ for both Run1 and Run2, and in all trigger category

 $B^+ \to K^+ J/\psi (\to \mu^+ \mu^-)$

$$B^+ \to K^+ J/\psi (\to e^+ e^-)$$

Phys. Rev. Lett. 122, 191801 (2019)

40

Cross-check #2: differential $r_{J/\psi}$

- Cross-check efficiency is well understood in all kinematic region
 - Ensure $r_{J/\psi}$ is flat for all variables examined

Cross-check #2(b): 2D-differential $r_{J/\psi}$

Cross-check for possible correlated effects in kinematic variables

Flatness gives confidence that efficiencies are understood in the entire phase space!

Cross-check #3: $R_{\psi(2S)}$

◆ Test double ratio cancellation on $B^+ \to K^+ \psi(2S)(\ell^+ \ell^-)$ decays

Phys. Rev. Lett. 122, 191801 (2019)

$$R_{\psi(2S)} = \frac{\mathcal{B}(B^+ \to K^+ \psi(2S)(\mu^+ \mu^-))}{\mathcal{B}(B^+ \to K^+ J/\psi(\mu^+ \mu^-))} \Big/ \frac{\mathcal{B}(B^+ \to K^+ \psi(2S)(e^+ e^-))}{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))} = 0.986 \pm 0.013 \text{ (stat + syst)}$$

Belle II and LHCb Upgrades

J. Albrecht Portoroz 2019

New era of precision measurements

A. Mauri (UZH)