Multi-pass optical cavity for the measurement of the hyperfine splitting in muonic hydrogen

Mirosław Marszałek

On behalf of the CREMA collaboration

The finite-size effect in hydrogen

The finite-size effect in hydrogen

The finite-size effect in hydrogen

Muonic hydrogen

Hyperfine structure

$$\Delta E_{\rm hfs} = E_{\rm F} (1 + \Delta E_{\rm QED} + \Delta E_{\rm TPE} + \ldots)$$

Hyperfine structure $E_{\rm F} \propto \langle \mu_p \cdot \mu_\mu \rangle |\Psi(0)|^2$ $\Delta E_{\rm hfs} = E_{\rm F} 1 + \Delta E_{\rm QED} + \Delta E_{\rm TPE} + \dots \big)$ F = 1 $1S_{1/2}$ F = 0

Spectroscopy of muonic hydrogen

Spectroscopy of muonic hydrogen

Spectroscopy of muonic hydrogen

The HyperMu experiment

- WHO: The CREMA collaboration
- WHERE: The HIPA accelerator at PSI

- WHAT: The hyperfine splitting in muonic hydrogen at the the ppm level
- WHY: To gain insight into the nucleon structure

How do we measure this?

How do we measure this?

Hyperfine splitting

- Magnetic dipole transition
- No emitted photon

The apparatus

1. De-excitation.

2. Collision with a wall.

1. De-excitation.

2. Collision with a wall.

3. Detection.

The apparatus

Requirements for the cavity

- Large illuminated volume
- >500 reflections
- Cryogenic temperatures

Cavity geometry

Closed toroidal surface

Cavity geometry

 $R_{x} = \frac{L}{2}$ $R_y > L_{/2}$ Closed toroidal surface L X - 50 m У Χ x× Z Ζ $R_y > L_{/2}$ $R_x > L/_2$ Two separate toric mirrors

⊢−+−−+ 50 mm

K

Ray tracing

Ray tracing

Fluence distributions

Fluence distributions

Performance of both designs

Performance of both designs

dielectric

- We have designed several variants of the cavity.
- The first prototype has arrived!
- It's time to test them.

- We have designed several variants of the cavity.
- The first prototype has arrived!

• It's time to test them.

Thank you!