

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

Angular analysis of $B^0 \to K^{*0}\ell^+\ell^-$ decays at LHCb

Zhenzi Wang

University of Zurich

28 August 2019

$B^0 \to K^{*0} \ell^+ \ell^-$ angular analysis

Remember P'_5 ?

See hints of lepton flavour universality (LFU) violation in R_{K^*} — what about angular observables?

 $B^0 \to K^{*0} \ell^+ \ell^-$ angular analysis

$B^0 \to K^{*0}\ell^+\ell^-$ angular analysis

Electrons vs muons

Electrons vs muons

Electron channel more challenging — to date no $B^0 \rightarrow K^{*0}e^+e^-$ angular measurements at LHCb _ comparable to those of $B^0 \to K^{*0} \mu^+ \mu^-$ Signal decays 80 Candidates per 10 MeV/ c^2 LHCb LHCb 10^{4} 70 E $\cdots B^0 \rightarrow K^{*0} \mu^+ \mu^ \cdots B^0 \to K^{*0} \psi(2S)$ Combinatorial (2S) 10^{3} $\cdots B^0 \to K^{*0} J/\psi$ JIW 10^{2} $1.1 < q^2 < 6.0 [\text{GeV}^2/c^4]$ Central q^2 10 10 Pull 5200 5400 5600 5800 4500 6000 5000 5500 $m(K^+\pi^-\mu^+\mu^-)$ [MeV/c²] $m(K^{+}\pi^{-}\mu^{+}\mu^{-})$ [MeV/c²] ee MeV/c^2 20 q^2 [GeV²/ c^4 LHCb 35 LHCb $\cdots B^0 \rightarrow K^{*0} e^+ e^-$ Radiative tail Candidates per 34 Combinatorial 10^{2} $B \rightarrow Xe^+e^-$ 2012 $B^0 \rightarrow K^{*0} J/\psi$ 10 15 $1.1 < q^2 < 6.0 [\text{GeV}^2/c^4]$ 8 1010 6 Pulls 4500 [4] 5000 5500 6000 5000 5500 **4**500 6000 $m(K^{+}\pi^{-}e^{+}e^{-})$ [MeV/c²] $m(K^{+}\pi^{-}e^{+}e^{-})$ [MeV/ c^{2}]

Zhenzi Wang

 $B^0 \to K^{*0} \ell^+ \ell^-$ angular analysis

 $B^0 \to K^{*0} \ell^+ \ell^-$ angular analysis

Electron strategy: constrained q^2

- Cutting on the q^2 with B^0 primary vertex and mass constraint allows for the extension of the analysis range up to 7.0 GeV²/c⁴

Increase statistics without increasing background

Zhenzi Wang

5

$B^0 \to K^{*0} \ell^+ \ell^-$ angular analysis

Electron strategy: folding

- For electron channel 'fold' signal PDF to reduce impact of low statistics, e.g. for P'_5

Angular acceptance

- Acceptance effect: distortions to the distributions of $\cos \theta_K$, $\cos \theta_\ell$, ϕ (and q^2) caused by reconstruction, triggering and selections
- Due to correlation between angles and q^2 , acceptance does not factorise parametrise in 4d

$$\epsilon(\cos\theta_l, \cos\theta_K \phi, q^2) = \sum_{ijmn} c_{ijmn} L_i(\cos\theta_l) L_j(\cos\theta_K) L_m(\phi) L_n(q^2)$$

 L_i — Legendre polynomials of order i

 c_{ijmn} — coefficients from moments analysis

Selections, e.g. IP and P_T cuts on π/K , can alter $\cos \theta_{\rm K}$ distribution

[6]

7

Mass and angular fit: muons

- Extract observables via unbinned maximum likelihood fit of $m(K^+\pi^-\mu^+\mu^-)$, $\cos\theta_K$, $\cos\theta_\ell$, ϕ , and $m(K^+\pi^-)$ after adjusting for acceptance

Mass and angular fit: electrons

- Example (simulation) of a similar fit for the electron channel

Ongoing analyses

- $B^0 \to K^{*0}e^+e^-$ and $B^0 \to K^{*0}\mu^+\mu^-$ angular analyses (~5 fb⁻¹) are currently in progress
- Muon channel analysis at advanced stage and close to unblinding
- Electron channel requires more work (background studies)

Summary

- Anomalous results in $B^0 \to K^{*0}\ell^+\ell^-$ angular and LFU observables motivate angular analysis of $B^0 \to K^{*0}\mu^+\mu^-$ with increased statistics, as well as the analysis of $B^0 \to K^{*0}e^+e^-$
- Electron channel more difficult to study due to decreased resolution and selection efficiency
- Partial compensation possible through the usage of folding and constrained q^2
- Both $B^0 \to K^{*0}\mu^+\mu^-$ and $B^0 \to K^{*0}e^+e^-$ analyses using data corresponding to around 5 fb⁻¹ of luminosity are in progress

11

References

[1] *P*[']₅ multi-collaborations plot: ATLAS, ATLAS-CONF-2017- 023, Apr 2017; CMS, CMS-PAS-BPH-15-008, 2017; Belle, S. Wehle et al. Phys. Rev. Lett., 118:111801, Mar 2017; LHCb, R. Aaij et al. JHEP, 02:104, 2016.

[2] R_{K^*} plot: The LHCb collaboration, Aaij, R., Adeva, B. et al. J. High Energ. Phys. (2017) 2017: 55. <u>https://doi.org/10.1007/</u> JHEP08(2017)055, SM predictions from:

Bordone, M., Isidori, G. & Pattori, A. Eur. Phys. J. C (2016) 76: 440. https://doi.org/10.1140/epjc/s10052-016-4274-7

Nicola Serra, Rafael Silva Coutinho, and Danny van Dyk. Measuring the breaking of lepton flavour universality in $B \rightarrow K^{*0} \ell^+ \ell^-$. Phys. Rev. D, 95:035029, Feb 2017.

Altmannshofer, W., Niehoff, C., Stangl, P. et al. Eur. Phys. J. C (2017) 77: 377. <u>https://doi.org/10.1140/epjc/s10052-017-4952-0</u>

S. Jäger and J. Martin Camalich. Reassessing the discovery potential of the $B \to K^{*0}\ell^+\ell^-$ decays in the large-recoil region: SM challenges and BSM opportunities. Phys. Rev. D, 93:014028, Jan 2016.

B. Capdevila, S. Descotes-Genon, J. Matias, J. Virto. Assessing lepton-flavour non-universality from $B \rightarrow K^{*0}\ell\ell$. Journal of Physics: Conference Series, 873:012039, Jul 2017.

[3] Belle muon/electron P'₅: S. Wehle et al. (Belle Collaboration), Phys. Rev. Lett. 118, 111801 – Published 13 March 2017

[4] R_{K^*} 3 fb⁻¹ analysis: The LHCb collaboration, Aaij, R., Adeva, B. et al. J. High Energ. Phys. (2017) 2017: 55. <u>https://doi.org/10.1007/JHEP08(2017)055</u>

[5] Constrained q^2 plot: Federica Lionetto. Measurement of Angular Observables of $B^0 \to K^{*0}\mu^+\mu^-$ and $B^0 \to K^{*0}e^+e^-$ Decays and the Upgrade of LHCb, Feb 2018. Presented 22 Mar 2018.

[6] $B^0 \rightarrow K^{*0}\mu^+\mu^- 3 \text{ fb}^{-1}$ analysis: The LHCb collaboration, Aaij, R., Abellán Beteta, C. et al. J. High Energ. Phys. (2016) 2016: 104. https://doi.org/10.1007/JHEP02(2016)104