Amplitude analysis of

\[B^0 \rightarrow (\pi^+ \pi^-)(K^+ \pi^-) \] decays

María Vieites Díaz,
École Polytechnique Fédérale de Lausanne

Joint Annual Meeting of the
Swiss Physical Society
and the Austrian Physical Society

26–30 August, Universität Zürich
Phenomenology of the $B^0 \rightarrow \rho^0 K^*(892)^0$ decay

Charmless B^0 meson decay reconstructed as $B^0 \rightarrow \rho^0(\pi^+\pi^-)K^*(892)^0(K^+\pi^-)$

- **Proceeds via:**
 - A doubly Cabibbo suppressed tree
 - A gluonic $b \rightarrow s$ penguin (GP)
 - A electro-weak $b \rightarrow s$ penguin (EWP)
 - Tree and GP diagrams have similar amplitudes \rightarrow maximises interferences

- **Self-tagged** decay: \[
\begin{align*}
B^0 & \rightarrow (\pi^+\pi^-)(K^+\pi^-) \\
\bar{B}^0 & \rightarrow (\pi^-\pi^+)(K^-\pi^+)
\end{align*}
\]

- **Vector** resonances \rightarrow **additional** CP-violating **observables** and sensitivity to QCD dynamic effects

M. Vieites Díaz (EPFL)
Annual SPS meeting, 28th August 2019
Observables in an amplitude analysis of $B \rightarrow VV$ decays

$B \rightarrow (p_a p_b)_1 (p_c p_d)_2$ decays

Can be **fully described** in terms of:
- Three helicity angles: θ_1, θ_2, ϕ
- Two invariant masses: m_1, m_2

A $B \rightarrow VV$ proceeds via three amplitudes \rightarrow three spin configurations:
P-odd $S_{VV} = 1$ and P-even $S_{VV} = 0, 2$, rotated into the transversity basis $\lambda = L, ||, \perp$.

EWP diagram contributes differently to each amplitude: rich pattern of interferences.
Observables in an amplitude analysis of $B \rightarrow VV$ decays

$B \rightarrow (p_a p_b) (p_c p_d)$ decays

Can be fully described in terms of:

- Three helicity angles: θ_1, θ_2, ϕ
- Two invariant masses: m_1, m_2

A $B \rightarrow VV$ proceeds via three amplitudes \rightarrow three spin configurations:
P-odd $S_{VV} = 1$ and P-even $S_{VV} = 0, 2$, rotated into the transversity basis $\lambda = L, ||, \perp$.

EWP diagram contributes differently to each amplitude: rich pattern of interferences.

Observables: number of events per amplitude (polarisation fractions), f^λ, and their phase differences:

$$f^\lambda \equiv \frac{|A^\lambda|^2}{|A^L|^2 + |A^||^2 + |A^\perp|^2}$$

$$\delta \lambda_i - \lambda_j \equiv (\delta \lambda_i - \delta \lambda_j)$$

→ Sensitivity to CPV by comparing B and \bar{B} parameters
Available results:

- All available measurements are CP-averaged
- Precise predictions unavailable, general dynamics not fully understood → polarisation puzzle
- Large f_L values confirmed in $b \to u$ tree dominated decays
- Penguin dominated modes span wider ranges
Available results:

- All available measurements are CP-averaged
- Precise predictions unavailable, general dynamics not fully understood → polarisation puzzle
- Large f_L values confirmed in $b \rightarrow u$ tree dominated decays
- Penguin dominated modes span wider ranges
The landscape of longitudinal polarisations

Available results:

- All available measurements are CP-averaged
- Precise predictions unavailable, general dynamics not fully understood → polarisation puzzle
- Large f_L values confirmed in $b \to u$ tree dominated decays
- Penguin dominated modes span wider ranges
The landscape of longitudinal polarisations

Available results:

- All available measurements are CP-averaged
- Precise predictions unavailable, general dynamics not fully understood → polarisation puzzle
- Large f_L values confirmed in $b \rightarrow u$ tree dominated decays
- Penguin dominated modes span wider ranges

Two new measurements, first observation of CPV in f_L for VV decays (JHEP 05 (2019) 026) (LHCb Run I dataset)
In general, a VV final state cannot be uniquely selected and other possible decay channels must be accounted for:

Generalise to N amplitudes (isobar model):

$$d^5\Gamma \propto \Phi_4 \left| \sum_{i=1}^{N} A_i \cdot g_i(\cos \theta_1, \cos \theta_2, \phi) \cdot M_i(m_1, m_2) \right|^2$$

More observables: +1 amplitude, +1 phase difference per new contribution

An amplitude analysis disentangles the final state!

$A_i \rightarrow$ physical parameters

$g_i(\theta_1, \theta_2, \phi) \rightarrow$ spherical harm.

$M_i(m_1, m_2) \rightarrow$ mass prop.
Partial waves in the $B^0 \rightarrow \rho^0 K^*(892)^0$ channel

Remarks:
- Analyse a large phase-space: testing many variations of strong phase differences.
- Sensitive to localised CP-violating effects!

- The invariant mass dependence disentangles different resonances with the same spin
- The angular dependence separates contributions in partial waves

Partial waves:
- VV: $\rho K^*, \omega K^*$, VS: $\rho(K\pi), \omega(K\pi)$
- SV: $[f_0(500), f_0(980), f_0(1370)]K^*$
- SS: $[f_0(500), f_0(980), f_0(1370)](K\pi)$
Partial waves in the $B^0 \rightarrow \rho^0 K^*(892)^0$ channel

Remarks:

◊ Analyse a large phase-space: testing many variations of strong phase differences.
Sensitive to localised CP-violating effects!

◊ The invariant mass dependence disentangles different resonances with the same spin

◊ The angular dependence separates contributions in partial waves

Partial waves:

VV: $\rho K^*, \omega K^*$, VS: $\rho(K\pi), \omega(K\pi)$,

SV: $[f_0(500), f_0(980), f_0(1370)]K^*$,

SS: $[f_0(500), f_0(980), f_0(1370)](K\pi)$

*toy generated without interferences, only contains $\sum_i |A_i|^2$
(and $(a + b)^2 \neq a^2 + b^2$)
Signal selection: four-body mass fit

→ **Used to obtain signal weights**, which allows the amplitude fit to account for the signal PDF only.

The fit is performed simultaneously in 8 categories, arising from B-meson flavour, kinematics and selection requirements (trigger).

![Graphs showing mass distributions with signal and background components](image)

Modelling
- $B^0_{(s)}$ peaks: Hypatia function
- Combinatorial: exponential function

$\sim 11k$ signal events in $B^0 + \bar{B}^0$
Amplitude fit (1): projections on the helicity angles

\[\cos \theta_{\pi\pi} \]

\[\cos \theta_{K\pi} \]

\[\phi \]

VV: \(\rho K^*, \omega K^* \)

VS: \(\rho(K\pi), \omega(K\pi) \)

SV: \([f_0(500), f_0(980), f_0(1370)] K^* \)

SS: \([f_0(500), f_0(980), f_0(1370)](K\pi) \)
Amplitude fit(II): projections on the invariant masses

:\(B^0 \) \hspace{1cm} \bar{B}^0

\(m(\pi\pi) \)

\(m(K\pi) \)

\(m(\pi\pi\pi) \) (Not fitted)

\(VV: \rho K^*, \omega K^* \)

\(VS: \rho(K\pi), \omega(K\pi) \)

\(SV: [f_0(500), f_0(980), f_0(1370)]K^* \)

\(SS: [f_0(500), f_0(980), f_0(1370)](K\pi) \)
Full set of numerical results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>CP average, \tilde{f}</th>
<th>CP asymmetry, A</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>A^0_{pK^*}</td>
<td>^2$</td>
</tr>
<tr>
<td>$</td>
<td>A^0_{(500)K^*}</td>
<td>^2$</td>
</tr>
<tr>
<td>f_{pK^*}</td>
<td>0.164 ± 0.015 ± 0.022</td>
<td>-0.62 ± 0.09 ± 0.09</td>
</tr>
<tr>
<td>f_{pK^*}</td>
<td>0.435 ± 0.016 ± 0.042</td>
<td>0.188 ± 0.037 ± 0.022</td>
</tr>
<tr>
<td>f_{pK^*}</td>
<td>0.401 ± 0.016 ± 0.037</td>
<td>0.050 ± 0.039 ± 0.015</td>
</tr>
<tr>
<td>f_{pK^*}</td>
<td>0.68 ± 0.17 ± 0.16</td>
<td>-0.13 ± 0.27 ± 0.13</td>
</tr>
<tr>
<td>f_{pK^*}</td>
<td>0.22 ± 0.14 ± 0.15</td>
<td>0.26 ± 0.55 ± 0.22</td>
</tr>
<tr>
<td>f_{pK^*}</td>
<td>0.10 ± 0.09 ± 0.09</td>
<td>0.3 ± 0.8 ± 0.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>CP average, $\frac{1}{2}(\delta_B + \delta_B)$ [rad]</th>
<th>CP difference, $\frac{1}{2}(\delta_B - \delta_B)$ [rad]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta^0_{pK^*}$</td>
<td>1.57 ± 0.08 ± 0.18</td>
<td>0.12 ± 0.08 ± 0.04</td>
</tr>
<tr>
<td>$\delta^0_{pK^*}$</td>
<td>0.795 ± 0.030 ± 0.068</td>
<td>0.014 ± 0.030 ± 0.026</td>
</tr>
<tr>
<td>$\delta^0_{pK^*}$</td>
<td>-2.365 ± 0.032 ± 0.054</td>
<td>0.000 ± 0.032 ± 0.013</td>
</tr>
<tr>
<td>$\delta^0_{pK^*}$</td>
<td>-0.86 ± 0.29 ± 0.71</td>
<td>0.03 ± 0.29 ± 0.16</td>
</tr>
<tr>
<td>$\delta^0_{pK^*}$</td>
<td>-1.83 ± 0.29 ± 0.32</td>
<td>0.59 ± 0.29 ± 0.07</td>
</tr>
<tr>
<td>$\delta^0_{pK^*}$</td>
<td>1.6 ± 0.4 ± 0.6</td>
<td>-0.25 ± 0.43 ± 0.16</td>
</tr>
<tr>
<td>$\delta^0_{pK^*}$</td>
<td>-2.32 ± 0.22 ± 0.24</td>
<td>-0.20 ± 0.22 ± 0.14</td>
</tr>
<tr>
<td>$\delta^0_{(500)K^*}$</td>
<td>-2.28 ± 0.06 ± 0.22</td>
<td>-0.00 ± 0.06 ± 0.05</td>
</tr>
<tr>
<td>$\delta^0_{(500)K^*}$</td>
<td>0.39 ± 0.04 ± 0.07</td>
<td>0.018 ± 0.038 ± 0.022</td>
</tr>
<tr>
<td>$\delta^0_{(500)K^*}$</td>
<td>-2.76 ± 0.05 ± 0.09</td>
<td>0.076 ± 0.051 ± 0.025</td>
</tr>
<tr>
<td>$\delta^0_{(500)K^*}$</td>
<td>-2.80 ± 0.09 ± 0.21</td>
<td>-0.206 ± 0.088 ± 0.034</td>
</tr>
<tr>
<td>$\delta^0_{(500)K^*}$</td>
<td>-2.982 ± 0.032 ± 0.057</td>
<td>-0.027 ± 0.032 ± 0.013</td>
</tr>
<tr>
<td>$\delta^0_{(500)K^*}$</td>
<td>1.76 ± 0.10 ± 0.11</td>
<td>-0.16 ± 0.10 ± 0.04</td>
</tr>
<tr>
<td>$\delta^0_{(500)K^*}$</td>
<td>3.160 ± 0.035 ± 0.044</td>
<td>0.014 ± 0.035 ± 0.026</td>
</tr>
<tr>
<td>$\delta^0_{(500)K^*}$</td>
<td>-0.77 ± 0.09 ± 0.06</td>
<td>-0.109 ± 0.085 ± 0.034</td>
</tr>
<tr>
<td>$\delta^0_{(500)K^*}$</td>
<td>-3.93 ± 0.09 ± 0.07</td>
<td>-0.123 ± 0.085 ± 0.035</td>
</tr>
<tr>
<td>$\delta^0_{(500)K^*}$</td>
<td>-3.4 ± 0.5 ± 0.7</td>
<td>0.84 ± 0.52 ± 0.16</td>
</tr>
<tr>
<td>$\delta^0_{(500)K^*}$</td>
<td>-1.0 ± 0.4 ± 0.6</td>
<td>0.57 ± 0.41 ± 0.17</td>
</tr>
<tr>
<td>$\delta^0_{(500)K^*}$</td>
<td>2.4 ± 0.5 ± 0.8</td>
<td>-0.28 ± 0.51 ± 0.24</td>
</tr>
</tbody>
</table>
Full set of numerical results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>CP average, \tilde{f}</th>
<th>CP asymmetry, A</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>A_{fK^*}</td>
<td>^2$</td>
</tr>
<tr>
<td>$</td>
<td>A_{f^0}</td>
<td>^2$</td>
</tr>
</tbody>
</table>

Amplitudes and phase differences measured for 13 waves (CP-av. and asym.)

✓ First measurements for several modes
✓ First measurements of weak phases per channel
✓ First observation of CPV in angular distributions of VV decays
Detailed systematic uncertainties for the VV

- The $B^0 \rightarrow a_1(1260)^- K^+$, being sensitive to polarisations too, dominates the systematics for the VV parameters. S-waves are mostly affected by the parameters used in the mass propagators and the experimental resolution.

| Systematic uncertainty | $f_{pK^*}^0$ | $f_{pK^*}^0$ | $f_{pK^*}^0$ | $\delta_{pK^*}^{||-\perp}$ | $\delta_{pK^*}^{||-0}$ | $\delta_{pK^*}^{\perp-0}$ |
|---|---------------|---------------|---------------|-----------------------------|--------------------------|--------------------------|
| Centrifugal barrier factors | 0.001 | 0.001 | 0.002 | 0.001 | − | − |
| Hypatia parameters | 0.001 | 0.001 | 0.001 | 0.001 | − | − |
| $B_s^0 \rightarrow K^{*0} \bar{K}^{*0}$ bkg. | 0.005 | 0.003 | 0.005 | 0.018 | 0.02 | 0.02 |
| Simulation sample size | 0.004 | 0.004 | 0.004 | 0.009 | 0.02 | 0.02 |
| Data-Simulation corrections | − | − | − | 0.001 | − | − |

CP averages						
Centrifugal barrier factors	−	0.001	0.002	0.004	0.007	0.004
Hypatia parameters	−	0.003	0.002	0.001	0.002	0.002
$B_s^0 \rightarrow K^{*0} \bar{K}^{*0}$ bkg.	0.03	0.007	0.011	0.024	0.020	0.026
Simulation sample size	0.02	0.010	0.009	0.011	0.027	0.023
Data-Simulation corrections	−	0.001	0.001	−	0.002	0.002

CP asym.						
Centrifugal barrier factors	−	0.001	0.002	0.004	0.028	0.024
Hypatia parameters	−	0.003	0.002	0.001	0.002	0.002
$B_s^0 \rightarrow K^{*0} \bar{K}^{*0}$ bkg.	0.03	0.007	0.011	0.024	0.020	0.026
Simulation sample size	0.02	0.010	0.009	0.011	0.027	0.023
Data-Simulation corrections	−	0.001	0.001	−	0.002	0.002

Mass propagators parameters	0.011	0.005	0.006	0.004	0.028	0.024
Masses and angles resolution	0.010	0.016	0.018	0.031	0.029	0.040
Fit method	0.003	0.001	0.002	0.003	0.005	0.004
$a_1(1260)$ pollution	0.015	0.040	0.031	0.024	0.035	0.032
Symmetrised $(\pi \pi)$ PDF	0.004	−	0.004	0.005	0.001	0.001

Dominant and second dominant systematic uncertainties.
Remarks

- $B^0 \to \rho^0(K^+\pi^-)$ amplitude fixed (normalisation)
- Measurements of the relative amplitudes and phases for the remaining 13 waves

CP-averages

![CP-averages](chart.png)

![CP-averages](chart.png)

- Fit results (stats. and syst. uncertainties included)

CP-asymmetries

![CP-asymmetries](chart.png)

![CP-asymmetries](chart.png)

- Theoretical predictions (QCDF) with uncertainties

VV dominated angular distributions

CP-violating effects can be seen in:

- Different shapes of the inverted green parabola for the $V V$
- Different oscillation in the $V V$
Summary

- **Amplitude analyses**
 - Give access to large sets of observables probing structures of potential new contributions
 - Exp.: high technicality, require careful treatment of correlations and very good understanding of the detector effects
 - Th.: calculations still affected by very large uncertainties

- **Analysis of $B^0 \rightarrow (\pi^+\pi^-)(K^+\pi^-)$ decays**
 - New results from the CP averages and asymmetries of the polarisation fractions together with their phase differences: first evidence of CPV in differential distributions of VV decays!
 - Important input to the theory community: tests reliability of QCDF vs pQCD hypotheses (polarisation puzzle) and relevance of the EW penguin diagrams ($B \rightarrow K\pi$ puzzle)
 - This work hints towards large EWP influence and is in agreement with the expectation: $f_L(\rho^0K^{*0}) < f_L(\rho^-K^{*0}) < f_L(\rho^0K^{*-})$
Summary

- **Amplitude analyses**
 - Give access to large sets of observables probing structures of potential new contributions
 - Exp.: high technicality, require careful treatment of correlations and very good understanding of the detector effects
 - Th.: calculations still affected by very large uncertainties

- **Analysis of $B^0 \rightarrow (\pi^+\pi^-)(K^+\pi^-)$ decays**
 - New results from the CP averages and asymmetries of the polarisation fractions together with their phase differences: first evidence of CPV in differential distributions of VV decays!
 - Important input to the theory community: tests reliability of QCDF vs pQCD hypotheses (polarisation puzzle) and relevance of the EW penguin diagrams ($B \rightarrow K\pi$ puzzle)
 - This work hints towards large EWP influence and is in agreement with the expectation: $f_L(\rho^0 K^{*0}) < f_L(\rho^- K^{*0}) < f_L(\rho^0 K^{*-})$

Thank you for your attention!

...comments, questions
Backup slides
The LHCb detector

Collision
- @ 40 MHz

Visible Interactions
- 12 MHz

Vertex Detector
- Reconstruct vertices
- Decay time resolution: 46 fs
- IP reconstruction: 20 μm

Tracking System
- Momentum resolution
 - Δp/p = 0.4% — 0.6%

Dipole Magnet
- 4 Tm
- Normal conducting regular polarity switches

Calorimeters
- Energy measurement
- Particle identification

Muon System

Rich Detectors
- K/π/p separation

Two-level Trigger
- L0 hardware (12 → 1 MHz)
- HLT software (1 → 0.005 MHz)

Very good ϵ(μ)
Good ϵ(h)
Selection summary

Event selection is performed in three steps:

1.- Stripping + loose preselection cuts

Geometry of B decays is preselected using soft cuts on the p_T, IP and a good track quality is required. Soft PID cuts allow to reconstruct ρ^0 and $K^*(892)^0$ candidates.

2.- Multivariate analysis + PID

A BDT is used to reduce the combinatorial background. Charm decays are rejected by eliminating their phase space. Tighter PID cuts on π^\pm and K^\pm are applied and μ^\pm are vetoed.

3.- s-Weights&Injection of simulated events

Obtain a background substracted sample via s-Weights $\rightarrow M(K\pi\pi\pi)$ spectrum. The topologically similar $B_s^0 \rightarrow K^*(892)^0\bar{K}^*(892)^0$ decay is cancelled by injecting simulated $(K^+\pi^-)(K^-\pi^+)$ events.
The $B^0 \rightarrow (\pi \pi)(K \pi)$ amplitude model accounts for 10 decay channels (14 contributions):

<table>
<thead>
<tr>
<th>i</th>
<th>Type</th>
<th>A_i</th>
<th>$g_i(\theta_1, \theta_2, \phi)$</th>
<th>$M_i(m_1, m_2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ρ^0</td>
<td>$A^0_{\rho K^*}$</td>
<td>$\cos \theta_1 \cos \theta_2$</td>
<td>$M_{\rho}(m_1)M_{K^*}(m_2)$</td>
</tr>
<tr>
<td>2</td>
<td>$V_1 V$</td>
<td>$A^0_{\omega K^*}$</td>
<td>$\frac{1}{\sqrt{2}} \sin \theta_1 \sin \theta_2 \cos \phi$</td>
<td>$M_{\rho}(m_1)M_{K^*}(m_2)$</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>$A^0_{\omega K^*}$</td>
<td>$\frac{i}{\sqrt{2}} \sin \theta_1 \sin \theta_2 \sin \phi$</td>
<td>$M_{\rho}(m_1)M_{K^*}(m_2)$</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>$A^0_{\omega K^*}$</td>
<td>$\cos \theta_1 \cos \theta_2$</td>
<td>$M_{\omega}(m_1)M_{K^*}(m_2)$</td>
</tr>
<tr>
<td>5</td>
<td>$V_2 V$</td>
<td>$A^0_{\omega K^*}$</td>
<td>$\frac{1}{\sqrt{2}} \sin \theta_1 \sin \theta_2 \cos \phi$</td>
<td>$M_{\omega}(m_1)M_{K^*}(m_2)$</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>$A^0_{\omega K^*}$</td>
<td>$\frac{i}{\sqrt{2}} \sin \theta_1 \sin \theta_2 \sin \phi$</td>
<td>$M_{\omega}(m_1)M_{K^*}(m_2)$</td>
</tr>
<tr>
<td>7</td>
<td>$V_1 S$</td>
<td>$A^0_{\rho(K\pi)}$</td>
<td>$\frac{1}{\sqrt{3}} \cos \theta_1$</td>
<td>$M_{\rho}(m_1)M_{(K\pi)}(m_2)$</td>
</tr>
<tr>
<td>8</td>
<td>$V_2 S$</td>
<td>$A^0_{\omega(K\pi)}$</td>
<td>$\frac{1}{\sqrt{3}} \cos \theta_1$</td>
<td>$M_{\omega}(m_1)M_{(K\pi)}(m_2)$</td>
</tr>
<tr>
<td>9</td>
<td>$S_1 V$</td>
<td>$A^0_{f_0(500)K^*}$</td>
<td>$\frac{1}{\sqrt{3}} \cos \theta_2$</td>
<td>$M_{f_0}(500)(m_1)M_{K^*}(m_2)$</td>
</tr>
<tr>
<td>10</td>
<td>$S_2 V$</td>
<td>$A^0_{f_0(980)K^*}$</td>
<td>$\frac{1}{\sqrt{3}} \cos \theta_2$</td>
<td>$M_{f_0}(980)(m_1)M_{K^*}(m_2)$</td>
</tr>
<tr>
<td>11</td>
<td>$S_3 V$</td>
<td>$A^0_{f_0(1370)K^*}$</td>
<td>$\frac{1}{\sqrt{3}} \cos \theta_2$</td>
<td>$M_{f_0}(1370)(m_1)M_{K^*}(m_2)$</td>
</tr>
<tr>
<td>12</td>
<td>$S_1 S$</td>
<td>$A^0_{f_0(500)(K\pi)}$</td>
<td>$\frac{1}{3}$</td>
<td>$M_{f_0}(500)(m_1)M_{(K\pi)}(m_2)$</td>
</tr>
<tr>
<td>13</td>
<td>$S_2 S$</td>
<td>$A^0_{f_0(980)(K\pi)}$</td>
<td>$\frac{1}{3}$</td>
<td>$M_{f_0}(980)(m_1)M_{(K\pi)}(m_2)$</td>
</tr>
<tr>
<td>14</td>
<td>$S_3 S$</td>
<td>$A^0_{f_0(1370)(K\pi)}$</td>
<td>$\frac{1}{3}$</td>
<td>$M_{f_0}(1370)(m_1)M_{(K\pi)}(m_2)$</td>
</tr>
</tbody>
</table>

Account for the \bar{B} decay: $A_i \rightarrow \eta_i \bar{A}_i$; with η_i the parity of each amplitude:

$$\eta_{A_i} = 1$$ except for $\eta_{A_\perp} = -1$
Sources of systematic uncertainties

\[\text{PDF term} \sim \frac{A_i \cdot g_i(\theta_1, \theta_2, \phi) \cdot M_i(m_1, m_2) \times (...)^*}{\sum_{i,j} A_i A_j^{*} n_{wij}} \]

Normalisation: \(\sum_{i,j} A_i A_j^{*} n_{wij} \)
- \(A_i A_j^{*} \) → polarisation affects acceptance.
- \(n_{wij} \) obtained from MC sample, limited statistics
- \(n_{wij} \): data-simulation corrections (PID, \(p_B \) and \(N_{tracks} \))

Mass propagators: \(M(m_1, m_2) \)
- Vary the parameters in the propagators: \(BW(m, L, m_0, \Gamma_0, r_0) \rightarrow x_0 \rightarrow Gauss(x_0, \sigma_{x_0}) \)

Pull distributions: to estimate possible model-induced biases

Neglected contributions in the model:
- \(A_i A_j^{*} \): identical \(\pi \) exchange, \(B^0 \rightarrow (\pi^+ \pi^-)(K^+ \pi^-) \), and \(B^0 \rightarrow a_1(1240)^- K^+ \) pollution
- \(\theta_1, \theta_2, \phi, m_1, m_2 \): experimental resolution and orbital angular momentum barriers

Data sample:
- Negative weights cancelling the \(B_s^0 \rightarrow K^*(892)^0 \bar{K}^*(892)^0 \) contribution (yield and shapes)
- Signal weights from the sFit
Fitting frameworks

The $B^0 \rightarrow (\pi\pi)(K\pi)$ PDF model was implemented in three different frameworks:

- **Minuit + CPU: RooFit based**
 - Fully implemented in ROOT, was the first option for historical reasons
 - **Slow**: fits toy-MC in 15min
 - Has trouble converging with many (>20) free parameters in several dimensions with weighted data (spoil log \mathcal{L} smoothness)
 - ✓ toy-MC generation

- **Minuit + GPU: Ipanema based**
 - Same methods as above, but implemented in Python + pyCUDA
 - **Very fast**: fits toy-MC in 18s
 - Still relies on Minuit → same issues with weighted data as above
 - ✓ toy-MC based systematics (fits)

- **MultiNest + GPU: Ipanema based**
 - Implemented in Python + pyMultinest + pyCUDA
 - Uses nested sampling → performs good with weighted samples
 - Scans the whole parameter space → **very slow** (fits toy MC in 3h)
 - ✓ nominal fit + data based systematics
A glimpse into MultiNest

Uses **clustered nested sampling**: a **Monte Carlo** method targeted at the efficient calculation of the probability for a set of parameter values given a data sample.

Highlighted characteristics:

- Defines "high dimensionality" as > 50D :-)
- **Nested sampling**: new algorithm type (~ 2004) performing better (less evaluations needed) than MC-Markov-Chain reference
- **Clustered** nested sampling: very good finding several modes in the posterior distributions (induced by non smoothness of the log \mathcal{L} in our case)
- Very slow but: parameter estimation, uncertainties, log \mathcal{L} profiles, iso-log \mathcal{L} contours, correlations, ... all produced at once

Example of MultiNest performance finding peaks in a multimodal log \mathcal{L} distribution. Toy (left) vs fit (right).
PDF inside LHCb: acceptance

Goal: perform a maximum likelihood fit of the PDF model → compute the sum

\[
\frac{1}{N} \sum _{e}^{N} \log \left(\frac{|PDF_e|^2}{\int _D |PDF|^2} \right)
\]

- PDF\(_e\) is the PDF evaluated for event \(e\) and \(N\), the total number of events
- \(D\): 5D integration domain → shaped by the LHCb detector acceptance and the selection requirements ⇒ not easy to parametrise as \(f(\theta_1, \theta_2, \phi, m_1, m_2)\).

Relevance of \(D\):

- Defines the **normalisation of the PDF**
- Lack of analytical expression for \(D\): the 5D integral has to be done **numerically**.

In general, it will be needed to:

→ Rely on simulated samples (MC) to characterise \(D\)
→ Analyse different domains separately
→ Use an approximation to obtain an analytical expression allowing to generate toys
→ Control the normalisation of the PDF in the fit