Amplitude analysis of $B^0 ightarrow (\pi^+\pi^-)(K^+\pi^-)$ decays

María Vieites Díaz, École Polytechnique Fédérale de Lausanne

Joint Annual Meeting of the Swiss Physical Society and the Austrian Physical Society

26-30 August, Universität Zürich

Phenomenology of the ${\cal B}^0 o ho^0 {\cal K}^*(892)^0$ decay

Charmless B^0 meson decay reconstructed as $B^0 \rightarrow \rho^0(\pi^+\pi^-)K^*(892)^0(K^+\pi^-)$

Proceeds via:

- ◊ A doubly Cabibbo suppressed tree
- $\diamond A gluonic b \rightarrow s penguin (GP)$
- \diamond A electro-weak **b** \rightarrow **s** penguin (EWP)
- $ightarrow\,$ Tree and GP diagrams have similar amplitudes $ightarrow\,$ maximises interferences

• Self-tagged decay:
$$\begin{cases} B^0 \to (\pi^+\pi^-)(K^+\pi^-) \\ \overline{B}^0 \to (\pi^-\pi^+)(K^-\pi^+) \end{cases}$$

• Vector resonances \rightarrow additional CP-violating observables and sensitivity to QCD dynamic effects $\frac{\bar{u},\bar{d}}{2}$

Observables in an amplitude analysis of $B \rightarrow VV$ decays

 $B \rightarrow (p_a p_b)_1 (p_c p_d)_2 \text{ decays}$ Can be fully described in terms of: $\diamond \text{ Three helicity angles: } \theta_1, \theta_2, \phi$ $\diamond \text{ Two invariant masses: } m_1, m_2$

A $B \rightarrow VV$ proceeds via three amplitudes \rightarrow three spin configurations: P-odd $S_{VV} = 1$ and P-even $S_{VV} = 0, 2$, rotated into the transversity basis $\lambda = L, ||, \perp$.

EWP diagram contributes differently to each amplitude: rich pattern of interferences.

θ

Observables in an amplitude analysis of $B \rightarrow VV$ decays

 $B
ightarrow (p_a p_b)_1 (p_c p_d)_2$ decays

Can be fully described in terms of:

- ♦ Three helicity angles: θ_1, θ_2, ϕ
- ♦ Two invariant masses: m_1, m_2

A $B \rightarrow VV$ proceeds via three amplitudes \rightarrow three spin configurations: P-odd $S_{VV} = 1$ and P-even $S_{VV} = 0, 2$, rotated into the transversity basis $\lambda = L, ||, \perp$. EWP diagram contributes differently to each amplitude: rich pattern of interferences.

Observables: number of events per amplitude (**polarisation fractions**), f^{λ} , and their **phase differences**:

$$f^{\lambda}\equivrac{|\mathcal{A}^{\lambda}|^{2}}{|\mathcal{A}^{l}|^{2}+|\mathcal{A}^{l}|^{2}+|\mathcal{A}^{\perp}|^{2}}\qquad\delta^{\lambda_{i}-\lambda_{j}}\equiv(\delta^{\lambda_{i}}-\delta^{\lambda_{j}})$$

 \rightarrow Sensitivity to CPV by comparing *B* and \overline{B} parameters

$K^{*0}e^+e^-$ 0.0

Available results:

- All available measurements are **CP-averaged**
- Precise predictions unavailable, general dynamics not fully understood \rightarrow polarisation puzzle

The landscape of longitudinal polarisations

• Large f_L values confirmed in $b \rightarrow u$ tree dominated decays

M. Vieites Díaz (EPFL) 4

14

 $K^{*+}\overline{K}^{*0}$

Longitudinal Polarization Fraction in Charmless B Decays

 $n\overline{n}K^{*+}$

0.7

 f_L

 $\phi K_{5}^{*}(1430)^{+}$

*0 K*0

 $\lambda \overline{\lambda} K^{*0}$

 $\phi K_2^* (1430)^0$

Belle BABAR

Our Avg.

 $p\overline{p}K^{*0}$

HFLAV

April 2019

The landscape of longitudinal polarisations

Available results:

M. Vieites Díaz

(EPFL)

- All available measurements are CP-averaged
- Precise predictions unavailable, general dynamics not fully understood
 → polarisation puzzle
- Large f_L values confirmed in $b \rightarrow u$ tree dominated decays
- Penguin dominated modes span wider ranges

The landscape of longitudinal polarisations

Available results:

- All available measurements are CP-averaged
- Precise predictions unavailable, general dynamics not fully understood
 → polarisation puzzle
- Large f_L values confirmed in $b \rightarrow u$ tree dominated decays
- Penguin dominated modes span wider ranges

Longitudinal Polarization Fraction in Charmless B Decays

The landscape of longitudinal polarisations

Available results:

- All available measurements are **CP-averaged**
- Precise predictions unavailable, general dynamics not fully understood \rightarrow polarisation puzzle
- Large f_L values confirmed in $b \rightarrow u$ tree dominated decays
- Penguin dominated modes span wider ranges

Longitudinal Polarization Fraction in Charmless B Decays

Observables in an amplitude analysis of 4-body decays

In general, a VV final state cannot be uniquely selected and other possible decay channels must be accounted for:

Generalise to *N* amplitudes (isobar model):

$$d^{5}\Gamma \propto \Phi_{4} \left|\sum_{i=1}^{N} A_{i} \cdot g_{i}(\cos \theta_{1}, \cos \theta_{2}, \phi) \cdot M_{i}(m_{1}, m_{2})\right|^{2}$$

More observables: +1 amplitude, +1 phase difference per new contribution An amplitude analysis disentangles the final state!

 $A_i \rightarrow$ physical parameters $g_i(\theta_1, \theta_2, \phi) \rightarrow$ spherical harm. $M_i(m_1, m_2) \rightarrow$ mass prop.M. Vieites Díaz(EPFL)Annual SPS meeting, 28th August 20195

Partial waves in the $B^0 ightarrow ho^0 K^*(892)^0$ channel

Remarks:

 Analyse a large phase-space: testing many variations of strong phase differences.

Sensitive to localised CP-violating effects!

Partial waves:

VV: ρK*, ωK*, VS: ρ(Kπ), ω(Kπ),
SV: [f₀(500), f₀(980), f₀(1370)]K*,
SS:[f₀(500), f₀(980), f₀(1370)](Kπ)

◊ The invariant mass dependence disentangles different resonances with the same spin

◊ The angular dependence separates contributions in partial waves

Partial waves in the $B^0 ightarrow ho^0 K^* (892)^0$ channel

Remarks:

 Analyse a large phase-space: testing many variations of strong phase differences.

Sensitive to localised CP-violating effects!

Partial waves:

VV:
$$\rho K^*, \omega K^*, \mathbf{VS}: \rho(K\pi), \omega(K\pi)$$

SV: [f₀(500), f₀(980), f₀(1370)]*K**, **SS**:[f₀(500), f₀(980), f₀(1370)](*K*π)

*toy generated without interferences, only contains $\sum_{i} |A_i|^2$ (and $(a + b)^2 \neq a^2 + b^2$) \diamond The invariant mass dependence disentangles different resonances with the same spin

◊ The angular dependence separates contributions in partial waves

Signal selection: four-body mass fit

 \rightarrow Used to obtain signal weights, which allows the amplitude fit to account for the signal PDF only.

The fit is performed simultaneously in 8 categories, arising from *B*-meson flavour, kinematics and selection requirements (trigger).

Modelling

- $B_{(s)}^0$ peaks: Hypatia function
- Combinatorial: exponential function

 ~ 11 k signal events in $B^0 + \overline{B}^0$

Amplitude fit (I): projections on the helicity angles

Full set of numerical results

JHEP 05 (2019) 026

Parameter CP ave	erage $\frac{1}{2}(\delta_{\overline{n}} + \delta_{\overline{n}})$ [rad] <i>CP</i> difference $\frac{1}{2}(\delta_{\overline{n}} - \delta_{\overline{n}})$ [rad]
Parameter CP average, f CP asymmetry, A	crage; 2(0B + 0B) [rad] er dinerenet; 2(0B - 0B) [rad]
$ A^0_{vc} ^2 = 0.32 \pm 0.04 \pm 0.07 = -0.75 \pm 0.07 \pm 0.17$ $\delta^0_{\ell K^*} = 1.57$	$7 \pm 0.08 \pm 0.18$ $0.12 \pm 0.08 \pm 0.04$
$ A _{12} = 0.70 \pm 0.04 \pm 0.08 = 0.010 \pm 0.010 = \delta_{0}^{11} = 0.79$	$95 \pm 0.030 \pm 0.068$ $0.014 \pm 0.030 \pm 0.026$
$ A_{\rho K^*} = 0.70 \pm 0.04 \pm 0.08$ $-0.049 \pm 0.035 \pm 0.019$ $\delta_{\rho K^*}^{(1)} = -2.36$	$65 \pm 0.032 \pm 0.054$ $0.000 \pm 0.032 \pm 0.013$
$\frac{ A_{pK^*} }{ A_{pK^*} } = 0.07 \pm 0.04 \pm 0.07 = -0.187 \pm 0.031 \pm 0.020 = \frac{1}{6} \frac{1}{6} \frac{1}{10} \frac{1}{10} = -0.86$	6 + 0.29 + 0.71 $0.03 + 0.29 + 0.16$
$\begin{vmatrix} A_{\omega K^*} \end{vmatrix}^* = 0.019 \pm 0.010 \pm 0.012 \qquad -0.6 \pm 0.4 \pm 0.4 \qquad \qquad$	$2 \pm 0.20 \pm 0.22$ $0.50 \pm 0.20 \pm 0.07$
$ A_{\psi K^*}^{-1} ^2 = 0.0050 \pm 0.0029 \pm 0.0031 = -0.30 \pm 0.54 \pm 0.28 = 0.0050 \pm 0.0029 \pm 0.0031 = -0.30 \pm 0.54 \pm 0.28 = 0.0050 \pm 0.0029 \pm 0.0029 \pm 0.0031 = -0.30 \pm 0.54 \pm 0.28 = 0.0050 \pm 0.0029 \pm 0.0029 \pm 0.0031 = -0.30 \pm 0.54 \pm 0.28 = 0.0050 \pm 0.0029 \pm 0.0029 \pm 0.0031 = -0.30 \pm 0.54 \pm 0.28 = 0.0050 \pm 0.0029 \pm 0.0029 \pm 0.0031 = -0.30 \pm 0.54 \pm 0.28 = 0.0050 \pm 0.0029 \pm 0.0029 \pm 0.0031 = -0.30 \pm 0.54 \pm 0.28 = 0.0050 \pm 0.0029 \pm 0.0029 \pm 0.0031 = -0.30 \pm 0.54 \pm 0.28 = 0.0050 \pm 0.0029 \pm 0.0029 \pm 0.0031 = -0.30 \pm 0.54 \pm 0.28 = 0.0050 \pm 0.0029 \pm 0.0029 \pm 0.0031 = -0.30 \pm 0.54 \pm 0.28 = 0.0050 \pm 0.0029 \pm 0.0029 \pm 0.0031 = -0.30 \pm 0.0029 \pm 0.0031 = -0.30 \pm 0.0029 \pm 0.002$	$5 \pm 0.29 \pm 0.32$ $0.39 \pm 0.29 \pm 0.07$
$ A_{\omega K^*}^+ ^2 = 0.0020 \pm 0.0019 \pm 0.0015 = -0.2 \pm 0.9 \pm 0.4 = 0.0020 \pm 0.0019 \pm 0.0015 = -0.2 \pm 0.9 \pm 0.4 = 0.0020 \pm 0.0019 \pm 0.0015 = -0.2 \pm 0.9 \pm 0.4$	$\pm 0.4 \pm 0.6 -0.25 \pm 0.43 \pm 0.16$
$ A_{\omega(K\pi)} ^2 = 0.026 \pm 0.011 \pm 0.025 = -0.47 \pm 0.33 \pm 0.45 = \delta_{\omega(K\pi)} = -2.32$	$2 \pm 0.22 \pm 0.24 = -0.20 \pm 0.22 \pm 0.14$
$ A_{f_0(500)K^*} ^2 = 0.53 \pm 0.05 \pm 0.10 = -0.06 \pm 0.09 \pm 0.04 = \delta_{f_0(500)K^*} = -2.28$	$8 \pm 0.06 \pm 0.22$ $-0.00 \pm 0.06 \pm 0.05$
$ A_{f_0(980)K^*} ^2$ 2.42 ± 0.13 ± 0.25 $-0.022 \pm 0.052 \pm 0.023$ $\delta_{f_0(980)K^*}$ 0.39	$9 \pm 0.04 \pm 0.07$ $0.018 \pm 0.038 \pm 0.022$
$ A_{f_{0}(1370)K^{*}} ^{2}$ 1.29 ± 0.09 ± 0.20 -0.09 ± 0.07 ± 0.04 $\delta_{f_{0}(1370)K^{*}}$ -2.76	$6 \pm 0.05 \pm 0.09$ $0.076 \pm 0.051 \pm 0.025$
$ A_{f_0(500)(K\pi)} ^2 = 0.174 \pm 0.021 \pm 0.039 = 0.30 \pm 0.12 \pm 0.09 = \delta_{f_0(500)(K\pi)} = -2.80$	$0 \pm 0.09 \pm 0.21$ $-0.206 \pm 0.088 \pm 0.034$
$ A_{f_0(980)(K\pi)} ^2$ 1.18 ± 0.08 ± 0.07 -0.083 ± 0.066 ± 0.023 $\delta_{f_0(980)(K\pi)}$ -2.98	$82 \pm 0.032 \pm 0.057$ $-0.027 \pm 0.032 \pm 0.013$
$ A_{f_0(1370)(K\pi)} ^2 = 0.139 \pm 0.028 \pm 0.039 = -0.48 \pm 0.17 \pm 0.15 \qquad \delta_{f_0(1370)(K\pi)} = 1.76$	$6 \pm 0.10 \pm 0.11 -0.16 \pm 0.10 \pm 0.04$
$f^0_{\rho K^*}$ = 0.164 ± 0.015 ± 0.022 = -0.62 ± 0.09 ± 0.09 $\delta^{\parallel -\perp}$ 3.16	$60 \pm 0.035 \pm 0.044$ $0.014 \pm 0.035 \pm 0.026$
$f_{aK*}^{[l]} = 0.435 \pm 0.016 \pm 0.042 = 0.188 \pm 0.037 \pm 0.022 = s_{[l]}^{\rho K^*} = 0.77$	7 1 0 00 1 0 00 0 100 1 0 005 1 0 024
f_{aV}^{-1} 0.401 ± 0.016 ± 0.037 0.050 ± 0.039 ± 0.015 ρ_{bV}^{-1} 0.00	-0.109 ± 0.034
$f_{\mu\nu}^{0}$ 0.68 ± 0.17 ± 0.16 -0.13 ± 0.27 ± 0.13 $\delta_{eK^*}^{-K^*}$ -3.93	$3 \pm 0.09 \pm 0.07 -0.123 \pm 0.085 \pm 0.035$
$f_{WK^*}^{\ I\ } = 0.22 \pm 0.14 \pm 0.15 = 0.26 \pm 0.55 \pm 0.22 = \delta_{WK^*}^{\ I\ -1} = -3.4$	$\pm 0.5 \pm 0.7$ $0.84 \pm 0.52 \pm 0.16$
$f_{\omega K^*} = 0.22 \pm 0.14 \pm 0.10 = 0.22 \pm 0.53 \pm 0.22 = 0.01 \pm 0.00 = -1.0$	$\pm 0.4 \pm 0.6$ $0.57 \pm 0.41 \pm 0.17$
$J_{\omega K^*} = 0.10 \pm 0.00 \pm 0.00 \pm 0.00 \pm 0.00 \pm 0.04$ $\delta_{L=0}^{\pm -0} = 2.4$	+0.5 + 0.8 -0.28 + 0.51 + 0.24

Full set of numerical results

CP average, $\frac{1}{2}(\delta_{\bar{B}} + \delta_{B})$ [rad] | *CP* difference, $\frac{1}{2}(\delta_{\bar{B}} - \delta_{B})$ [rad] Parameter Parameter CP average, \tilde{f} CP asymmetry. A $\pm 0.08 \pm 0.18$ $0.12 \pm 0.08 \pm 0.04$ $\delta^0_{\rho K^*}$ 1.57 $|A^0_{\rho K^*}|^2$ $\pm 0.04 \pm 0.07$ $-0.75 \pm 0.07 \pm 0.17$ 0.32 $0.014 \pm 0.030 \pm 0.026$ $0.795 \pm 0.030 \pm 0.068$ $|A_{\rho K}^{\parallel}\rangle$ ± 0.013 Amplitudes and phase differences $|A_{\rho K}^{\perp}|$ ± 0.16 $|A^0_{\omega h}$ measured for 13 waves (CP-av. and asym.) $\begin{array}{c} |A_{\omega I}^{\parallel} \\ |A_{\omega I}^{\perp} \\ |A_{\omega I} \\ |A_{\omega (I} \end{array}$ ± 0.07 ± 0.16 ± 0.14 First measurements for several modes $|A_{f_0(50)}|$ -0.022 $|A_{f_0(98)}|$ ± 0.025 $|A_{f_0(137)}|$ First measurements of weak phases per channel $|A_{f_0(500)}|$ -0.034 $|A_{f_0(980)}|$ -0.013 $|A_{f_0(1370)}|$ ± 0.04 First observation of CPV in angular distributions of VV decays \checkmark $\begin{array}{c} f^0_{\rho K} \\ f^\parallel_{\rho K} \\ f^\perp_{\rho K} \\ f^0_{\omega K} \\ f^0_{\omega K} \\ f^\parallel_{\omega K} \end{array}$ +0.026 $0.435 \pm 0.010 \pm 0.042$ UNINSTELUAUSTIETUAU/// $\delta^{\parallel=0}_{\rho K^*}$ $\varsigma^{\perp=0}_{\perp=0}$ -0.77 ± 0.09 ± 0.06 $-0.109 \pm 0.085 \pm 0.034$ 0.401 $\pm 0.016 \pm 0.037$ $0.050 \pm 0.039 \pm 0.015$ -3.93 ± 0.09 ± 0.07 $-0.123 \pm 0.085 \pm 0.035$ 0.68 ± 0.17 ± 0.16 $-0.13 \pm 0.27 \pm 0.13$ -3.4 ± 0.5 ± 0.7 $0.84 \pm 0.52 \pm 0.16$ $0.26 \pm 0.55 \pm 0.22$ ± 0.14 ± 0.15 ± 0.6 $0.57 \pm 0.41 \pm 0.17$ -1.0 ± 0.4 $f_{\omega K}^{\perp}$ ± 0.09 ± 0.09 0.3 $\pm 0.8 \pm 0.4$ $\delta^{\circ}_{\omega K^*}$ $\delta^{\perp -0}_{\omega K^*}$ ± 0.8 $-0.28 \pm 0.51 \pm 0.24$ 2.4 ± 0.5

Detailed systematical uncertainties for the VV

JHEP 05 (2019) 026

• The $B^0 \rightarrow a_1(1260)^- K^+$, being sensitive to polarisations too, dominates the systematics for the *VV* parameters. *S*-waves are mostly affected by the parameters used in the mass propagators and the experimental resolution.

	Systematic uncertainty	$f^{0}_{\rho K^{*}}$	$f_{\rho K^{*}}^{ }$	$f_{\rho K^*}^{\perp}$	$\delta^{ -\perp}_{\rho K^*}$	$\delta^{ -0}_{\rho K^*}$	$\delta^{\perp -0}_{\rho K^*}$
CP averages	Centrifugal barrier factors	0.001	0.001	0.002	0.001	_	_
	Hypatia parameters	0.001	0.001	0.001	0.001	_	_
	$B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg.	0.005	0.003	0.005	0.018	0.02	0.02
	Simulation sample size	0.004	0.004	0.004	0.009	0.02	0.02
	Data-Simulation corrections	-	-	-	0.001	_	_
CP asym.	Centrifugal barrier factors	-	0.001	0.002	0.004	0.007	0.004
	Hypatia parameters	-	0.003	0.002	0.001	0.002	0.002
	$B^0_s \to K^{*0} \overline{K}^{*0}$ bkg	0.03	0.007	0.011	(0.024)	0.020	0.026
	Simulation sample size	0.02	0.010	0.009	0.011	0.027	0.023
	Data-Simulation corrections	_	0.001	0.001	_	0.002	0.002
	Mass propagators parameters	0.011	0.005	0.006	0.004	0.028	0.024
non	Masses and angles resolution	0.010	(0.016)	(0.018)	0.031	0.029	0.040
	9 Fit method	0.003	0.001	0.002	0.003	0.005	0.004
S C	$a_1(1260)$ pollution	(0.015)	(0.040)	(0.031)	(0.024)	(0.035)	0.032
	Symmetrised $(\pi\pi)$ PDF	0.004	-	0.004	0.005	0.001	0.001

Dominant and second dominant systematic uncertainties.

M. Vieites Díaz (EPFL)

VV numerical fit results

Remarks

- $B^0
 ightarrow
 ho^0(K^+\pi^-)$ amplitude fixed (normalisation)
- Measurements of the relative amplitudes and phases for the remaining 13 waves

VV dominated angular distributions

Summary

• Amplitude analyses

- Give access to large sets of observables probing structures of potential new contributions
- Exp.: high technicality, require careful treatment of correlations and very good understanding of the detector effects
- Th.: calculations still affected by very large uncertainties
- Analysis of $B^0
 ightarrow (\pi^+\pi^-)(K^+\pi^-)$ decays
 - New results from the *CP* averages and asymmetries of the polarisation fractions together with their phase differences: first evidence of CPV in differential distributions of *VV* decays!
 - Important input to the theory community: tests reliability of QCDF vs pQCD hypotheses (polarisation puzzle) and relevance of the EW penguin diagrams ($B \rightarrow K\pi$ puzzle)
 - This work hints towards large EWP influence and is in agreement with the expectation: $f_L(\rho^0 \overline{K}^{*0}) < f_L(\rho^- \overline{K}^{*0}) < f_L(\rho^0 K^{*-})$

Summary

• Amplitude analyses

- Give access to large sets of observables probing structures of potential new contributions
- Exp.: high technicality, require careful treatment of correlations and very good understanding of the detector effects
- Th.: calculations still affected by very large uncertainties
- Analysis of $B^0
 ightarrow (\pi^+\pi^-) ({\cal K}^+\pi^-)$ decays
 - New results from the *CP* averages and asymmetries of the polarisation fractions together with their phase differences: first evidence of CPV in differential distributions of *VV* decays!
 - Important **input to the theory community**: tests reliability of QCDF vs pQCD hypotheses (polarisation puzzle) and relevance of the EW penguin diagrams ($B \rightarrow K\pi$ puzzle)
 - This work hints towards large EWP influence and is in agreement with the expectation: $f_L(\rho^0 \overline{K}^{*0}) < f_L(\rho^- \overline{K}^{*0}) < f_L(\rho^0 K^{*-})$

Thank you for your attention! ...comments, questions

Backup slides

The LHCb detector

LHCb Detector Performance

Selection summary

Event selection is performed in three steps:

1.- Stripping + loose preselection cuts

Geometry of B decays is preselected using soft cuts on the p_T , *IP* and a good track quality is required.

Soft PID cuts allow to reconstruct ho^0 and $K^*(892)^0$ candidates.

2.- Multivariate analysis + PID

A BDT is used to reduce the **combinatorial background**. **Charm decays are rejected** by eliminating their phase space. **Tighter PID** cuts on π^{\pm} and K^{\pm} are applied and μ^{\pm} are vetoed.

3.- s-Weights&Injection of simulated events

Obtain a **background substracted** sample via s-Weights $\rightarrow M(K\pi\pi\pi)$ spectrum.

The topologically similar $B_s^0 \to K^*(892)^0 \bar{K}^*(892)^0$ decay is cancelled by injecting simulated $(K^+\pi^-)(K^-\pi^+)$ events.

Build a PDF describing all waves

The $B^0 \rightarrow (\pi \pi)(K\pi)$ amplitude model accounts for 10 decay channels (14 contributions):

Mass propagators

- $\diamond
 ho^0$: Gounaris-Sakurai
- ◊ ω, K*(892)⁰: relativistic spin-1 Breit-Wigners
- *f*₀(500): spin-0
 Breit-Wigner
- ◊ f₀(980): Flattè
- *f*₀(1370): spin-0
 Breit-Wigner
- ◊ (Kπ)₀: LASS with a Form Factor

	i	Туре	Ai	$g_i(\theta_1, \theta_2, \phi)$	$M_i(m_1, m_2)$
ai	1		$A^0_{\rho K^*}$	$cos\theta_1 cos\theta_2$	$M_{ ho}(m_1)M_{K^*}(m_2)$
	2	$v_1 v$	$A_{\rho K^*}^{ }$	$\frac{1}{\sqrt{2}}$ sin θ_1 sin θ_2 cos ϕ	$M_{\rho}(m_1)M_{K^*}(m_2)$
	3		$A_{\rho K^*}^{\perp}$	$\frac{i}{\sqrt{2}}$ sin θ_1 sin θ_2 sin ϕ	$M_\rho(m_1)M_{K^*}(m_2)$
	4		$A^0_{\omega K^*}$	$cos\theta_1 cos\theta_2$	$M_{\omega}(m_1)M_{K^*}(m_2)$
	5	$V_2 V$	$A^{ }_{\omega K^*}$	$\frac{1}{\sqrt{2}}$ sin θ_1 sin θ_2 cos ϕ	$M_{\omega}(m_1)M_{K^*}(m_2)$
	6		$A_{\omega K^*}^{\perp}$	$\frac{i}{\sqrt{2}}$ sin θ_1 sin θ_2 sin ϕ	$M_{\omega}(m_1)M_{K^*}(m_2)$
	7	V 1 S	$A^0_{\rho(K\pi)}$	$\frac{1}{\sqrt{3}}\cos\theta_1$	$M_{\rho}(m_1)M_{(K\pi)}(m_2)$
	8	V ₂ S	$A^0_{\omega(K\pi)}$	$\frac{1}{\sqrt{3}}\cos\theta_1$	$M_{\omega}(m_1)M_{(K\pi)}(m_2)$
	9	S_1V	$A^0_{f_0(500)K^*}$	$\frac{1}{\sqrt{3}}\cos\theta_2$	$M_{f_0(500)}(m_1)M_{K^*}(m_2)$
	10	S_2V	$A_{f_0(980)K^*}^{0}$	$\frac{\sqrt{1}}{\sqrt{3}}\cos\theta_2$	$M_{f_0(980)}(m_1)M_{K^*}(m_2)$
	11	S_3V	$A_{f_0(1370)K^*}^{0}$	$\frac{1}{\sqrt{3}}\cos\theta_2$	$M_{f_0(1370)}(m_1)M_{K^*}(m_2)$
	12	<i>S</i> ₁ <i>S</i>	$A_{f_0(500)(K\pi)}^0$	1/3	$M_{f_0(500)}(m_1)M_{(K\pi)}(m_2)$
	13	S ₂ S	$A_{f_0(980)(K\pi)}^0$	$\frac{1}{3}$	$M_{f_0(980)}(m_1)M_{(K\pi)}(m_2)$
а	14	<i>S</i> ₃ <i>S</i>	$A_{f_0(1370)(K\pi)}^{0}$	1 3	$M_{f_0(1370)}(m_1)M_{(K\pi)}(m_2)$

Account for the \overline{B} decay: $A_i \rightarrow \eta_i \overline{A}_i$; with η_i the parity of each amplitude:

 $\eta_{\mathcal{A}_i} = 1$ except for $\eta_{\mathcal{A}_{\perp}} = -1$

Sources of systematic uncertainties

PDF term
$$\sim \frac{\mathcal{A}_{i} \cdot g_{i}(\theta_{1}, \theta_{2}, \phi) \cdot \mathcal{M}_{i}(m_{1}, m_{2}) \times (...)_{j}^{*}}{\sum_{i,j} \mathcal{A}_{i} \mathcal{A}_{j}^{*} n w_{ij}}$$

Normalisation: $\sum_{i,j} A_i A_j^* n w_{ij}$

- A_iA^{*}_i→ polarisation affects acceptance.
- nwij obtained from MC sample, limited statistics
- nw_{ij} : data-simulation corrections (PID, p_T^B and Ntracks)

Mass propagators: $\mathcal{M}(m_1, m_2)$

• Vary the parameters in the propagators: $BW(m, L, m_0, \Gamma_0, r_0) \rightarrow x_0 \rightarrow Gauss(x_0, \sigma_{x_0})$

Pull distributions: to estimate possible model-induced biases

Neglected contributions in the model:

- $A_i A_i^*$: identical π exchange, $B^0 \to (\pi^+\pi^-)(K^+\pi^-)$, and $B^0 \to a_1(1240)^-K^+$ pollution
- $\theta_1, \theta_2, \phi, m_1, m_2$: experimental resolution and orbital angular momentum barriers

Data sample:

- Negative weights cancelling the $B_s^0 \to K^*(892)^0 \bar{K}^*(892)^0$ contribution (yield and shapes)
- Signal weights from the sFit

Fitting frameworks

The $B^0 o (\pi\pi)(\kappa\pi)$ PDF model was implemented in three different frameworks:

• Minuit + CPU: RooFit based

- Fully implemented in ROOT, was the first option for historical reasons
- Slow: fits toy-MC in 15min
- Has trouble converging with many (>20) free parameters in several dimensions with weighted data (spoil log \mathcal{L} smoothness)
- ✓ toy-MC generation

Minuit + GPU: Ipanema based

- Same methods as above, but implemented in Python + pyCUDA
- Very fast: fits toy-MC in 18s
- Still relies on Minuit \rightarrow same issues with weighted data as above
- ✓ toy-MC based systematics (fits)

MultiNest + GPU: Ipanema based

- Implemented in Python + pyMultinest + pyCUDA
- Uses nested sampling \rightarrow performs good with weighted samples
- Scans the whole parameter space \rightarrow very slow (fits toy MC in 3h)
- ✓ nominal fit + data based systematics

→Multinest proiect

→Ipanema@arXiv

A glimpse into MultiNest

Uses **clustered** nested sampling: a **Monte Carlo** method targetted at the efficient calculation of the probability for a set of parameter values given a data sample

MULTINEST: an efficient and robust Bayesian inference tool for cosmology and particle physics

F. Feroz*, M.P. Hobson and M. Bridges Astrophysics Group, Cavendish Laboratory, JJ Thomson Aroma, Cambridge CB3 0HE, UK

1-14 (2008)

Highlighted characteristics:

- Defines "high dimensionality" as > 50D :-)
- Nested sampling: new algorithm type (\sim 2004) performing better (less evaluations needed) than MC-Markov-Chain reference
- Clustered nested sampling: very good finding several modes in the posterior distributions (induced by non smoothness of the log \mathcal{L} in our case)
- Very slow but: parameter estimation, uncertainties, log ${\cal L}$ profiles, iso-log ${\cal L}$ contours, correlations, ... all produced at once

Example of MultiNest performance finding peaks in a multimodal $\log \mathcal{L}$ distribution. Toy (left) vs fit (right).

Annual SPS meeting, 28th August 2019

PDF inside LHCb: acceptance

Goal: perform a maximum likelihood fit of the PDF model \rightarrow compute the sum

$$\frac{1}{N} \sum_{e}^{N} \log \left(\frac{|\mathtt{PDF}_{e}|^{2}}{\int_{\boldsymbol{\mathcal{D}}} |\mathtt{PDF}|^{2}} \right)$$

- PDF_e is the PDF evaluated for event e and N, the total number of events
- \mathcal{D} : 5D integration domain \rightarrow shaped by the LHCb detector acceptance and the selection requirements \Rightarrow not easy to parametrise as $f(\theta_1, \theta_2, \phi, m_1, m_2)$.

Relevance of \mathcal{D} :

- Defines the normalisation of the PDF
- Lack of analytical expression for \mathcal{D} : the 5D integral has to be done numerically.

In general, it will be needed to:

- ightarrow Rely on simulated samples (MC) to characterise $\mathcal D$
- \rightarrow Analyse different domains separately
- $ightarrow\,$ Use an approximation to obtain an analytical expression allowing to generate toys
- $\rightarrow~$ Control the normalisation of the PDF in the fit