Momentum Spectroscopy of Neutron Beta Decay Products with NoMoS

Waleed Khalid for the NoMoS Collaboration
ÖPG & SPS Joint Annual Meeting 2019
August 27, 2019

Thanks for contributions from R. Jiglau, G. Konrad, D. Moser, & M. Valentan
Neutron Decay in the Standard Model

\[
\tau_n \propto \frac{1}{|V_{ud}|^2 (1 + 3|\lambda|^2)} \quad ; \quad \tau_n = 879.4(0.6)\text{s}
\]

\[
T_{p,max} = 751\text{ eV} \quad ; \quad T_{e,max} = 781.6\text{ keV}
\]

\[\lambda = \frac{g_A}{g_V}\]

quark mixing
Neutron Decay in the Standard Model

\[\tau_n \propto \frac{1}{V_{ud}} \left(1 + 3|\lambda|^2 \right) \]

\[T_{p,\text{max}} = 751 \text{ eV} \]
\[T_{e,\text{max}} = 781.6 \text{ keV} \]

\[\tau_n = 879.4(0.6)\text{s} \]

Electron-Neutrino Correlation Coefficient

\[a = \frac{1 - |\lambda|^2}{1 + 3|\lambda|^2} = -0.1059(28) \]

Fierz Interference Term

\[b = 2 \frac{\text{Re}(g_s + 3\lambda g_T)}{1 + 3|\lambda|^2} = 0.067(90) \]
Measurement Principles

\[\vec{v}_D \propto \frac{1}{q} \frac{\vec{R} \times \vec{B}}{R^2 B^2} \]

\[D(p, \theta) = \int_{T} \nu_D \, dt \]

\[= \frac{p}{qB} \cdot \frac{1}{2} \left(\cos \theta + \frac{1}{\cos \theta} \right) \cdot \alpha \]

X. Wang et al., NIM A 701, 254 (2013)
Measurement Principles

\[\vec{v}_D \propto \frac{1}{q} \frac{\vec{R} \times \vec{B}}{R B^2} \]

\[
D(p, \theta) = \int_{T} \nu_D \, dt
\]

\[
= \frac{p}{qB} \cdot \frac{1}{2} \left(\cos \theta + \frac{1}{\cos \theta} \right) \cdot \alpha
\]

X. Wang et al., NIM A 701, 254 (2013)
Systematic Effects

\[D(p, \theta) = \frac{p}{qB} \cdot \frac{1}{2} \left(\cos \theta + \frac{1}{\cos \theta} \right) \cdot \alpha \]

- **Beam definition**
 - Neutron beam: shape of profile, residual polarization
 - B Field: homogeneities
 - Aperture: edge effect & backscattering

- **RxB drift**
 - B Field: absolute height, homogeneity, radial gradient
 - Opening angle \(\alpha \)

- **Drift distance measurement**
 - Detector alignment & Edge effects
 - Backscattering & Detector Efficiency

- **Background**: Residual gas, neutron-induced radiation

- **Proton measurements**
 - Electrostatic potentials: E×B, filter, offset, trapping
 - Doppler effect: neutron velocity
Proton Detector Considerations

- $T_{p,max} = 751 \text{ eV}$
 - Post Acceleration ($\approx -15 \text{ kV}$)
- Large Detection Area (10x7 cm2)
- Low Backscattering
- High spatial resolution (<1 mm)
- Linear Gain
- High Efficiency
- High S/N ratio
Proton Detector Considerations

- $T_{p,max} = 751$ eV
 - Post Acceleration (≈ -15 kV)
- Large Detection Area (10x7 cm2)
- Low Backscattering
- High spatial resolution (<1 mm)
- Linear Gain
- High Efficiency
- High S/N ratio
Proton Detector Considerations

- $T_{p,max} = 751$ eV
 - Post Acceleration (≈ -15 kV)
- Large Detection Area (10x7 cm²)
- Low Backscattering
- High spatial resolution (<1 mm)
- Linear Gain
- High Efficiency
- High S/N ratio
Proton Detector Considerations

- $T_{p,max} = 751$ eV
 - Post Acceleration (\approx-15 kV)
- Large Detection Area
 (10x7 cm2)
- Low Backscattering
- High spatial resolution
 (<1 mm)
- Linear Gain
- High Efficiency
- High S/N ratio
Proton Detector Considerations

- $T_{p,max} = 751$ eV
 - Post Acceleration (≈ -15 kV)
- Large Detection Area (10x7 cm2)
- Low Backscattering
- High spatial resolution (<1 mm)
- Linear Gain
- High Efficiency
- High S/N ratio
Proton Detector Efficiency

![Graph showing the detection efficiency of proton detectors under different conditions.]{:width=576}

- **Post-Accelerated Proton Energy**
 - 2keV
 - 10keV
 - 5keV
 - 15keV

- **Detection Threshold in no. of Electron/Hole Pairs Generated**

 - **pLGAD**
 - **DEPFET (uncooled)**
 - **DEPFET (-50° C)**
 - **SSD**

Preliminary Results
Summary and Outlook

• Precision measurements of neutron decay
 • Independent value for V_{ud} needed to shed light on top row CKM unitarity
 • Search for Physics beyond the Standard Model
• NoMoS Magnet system
 • Final optimizations in progress
• Systematic effects
 • Most systematic effects incorporated into fit function
 • Further investigations incl. MC simulations under way (using Geant)
• Detection System
 • Comparison of different detection techniques for secondary detectors in progress
 • Electrode design being developed (TASK Poster ID: 386)
 • Pursuit of pLGADs as the proton drift detector looks promising
Influence of Electron-Neutrino Coefficient on Spectra

![Graph showing the influence of electron-neutrino coefficient on spectra. The graph plots momentum (p) in keV/c against yield (a.u.). Two curves are shown: one for a = 0 and another for a = -0.103.](image)
Residual Spectra

The graph shows the residual spectra for different detector positions. The upper graph represents the yield (a.u.) with two curves: red (p+) and blue (e−), while the lower graph shows the residual intensity multiplied by 10^-5 (a.u.) for p+ with Δa/a = 2.8×10^-3 and e− with Δb = 1.2×10^-3.
Systematic Effects
Surface Effects (Charge Collection Efficiency)

- For Protons CCE is an important effect to consider
- CCE is not uniform due to
 - Surface defects
 - Recombination of holes and electrons

\[f_{cce}(z) = 1 - \gamma e^{-\frac{z}{\tau}} \]

\(\gamma \in [0.6, 0.9] \) & \(\tau = [50, 100] \text{nm} \)

Post-Acceleration Electrode

Different Geometries

Cylinder

Field Degrader

$$D_{E\times B} \propto \frac{E_n}{\sqrt{T - eU}}$$

Work in Progress
Best sensor: DEPFET

- Depleted P-channel Field Effect Transistor
- Fully depleted pixel sensor, pixels of any size possible
- Stores signal charge, can be read repeatedly
 - Very low noise
 - Best suited to our needs
- But long lead time (2 years), very expensive (5 sensors, 300 k€) and it requires additional cooling
 → not feasible at the moment
Current focus: pLGAD

- Combination of two existing concepts:
 - Low Gain Avalanche Diode for internal signal amplification
 - Pixel readout structure for 2D information and low noise rate

- Compared to a cooled DEPFET sensor, this sensor type
 - Has higher noise and thus lower efficiency
 - Has a much simpler readout
 - It is a lot cheaper
 - Would be a new, custom development (2 years)