Big Bang and stars, two hot environments for making elements

Georges Meynet Geneva University

All things are made of atoms—little particles that move around in perpetual motion, attracting each other when they are a little distance apart, but repelling upon being squeezed into one another. In that one sentence ... there is an enormous amount of information about the world.

Richard Feyman

Woosley, Trimble, Thielemann, Physics Today 2019

1- A BIT OF HISTORY

THE COOKING OF THE ELEMENTS NEEDS MORE THAN ONE POT

A Tale of two theories And One Dogma

The two theories

Elements all made in the early Universe

Elements all made in stars

The Dogma

A single site to create all the elements

But at least three nucleosynthetic sites

- \rightarrow Big Bang
- \rightarrow Stars
- → Interstellar medium irradiated by energetic particles

Document University of Colorado and Collection T. Lombry

https://www.britannica.com/biography/Fred-Hoyle/images-videos

George Gamow 1904-1968

Big Bang Nucleosynthesis

Fred Hoyle 1915-2001

Stars (stationary universe)

2- AN ARGUMENT AGAINST STARS

Helium must be produced during the Big Bang

Each time 4 nucleons are transformed into one He, an energy of 26 MeV is emitted

> BUT 28% observed

The amount of Helium nuclei required to be produced would represent → 10%

Of the mass of the Galaxy

3- MORE CHANCE IN THE EARLY UNIVERSE?

https://pages.uoregon.edu/jimbrau /BraulmNew/Chap27/7th/AT_7e_Fi gure_27_04.jpg

A first step towards Helium production → deuterium

$$p + n \rightarrow d + \gamma$$

Binding energy $2.2 \text{ MeV} \rightarrow 2.6 \times 10^{10} \text{ K}$

Actually, for substantial d production, the temperature must decrease to

$$T = 9 \times 10^8 \,\mathrm{K}$$

This happen ~270 s after BB

It is possible to estimate the ratio of the number of neutrons to the number of proton when deuterium begins to be synthesized

Number of neutrons/Number of protons=

One can estimate the mass fraction of helium formed if all neutrons are assumed to be locked into helium

> He fraction in number 0.07 \rightarrow In mass 0.28

> > OK! 28% observed

4- What else beyond helium?

The Big Bang nucleosynthesis: only a few light elements

What are the factors that limits the BBN to only a few light elements?

- The time available at sufficiently high T and densities (expansion)
- The absence of any stable element with atomic masses equal to 5 and 8

Primordial nucleosynthesis

At that point, the periodic table is still scarce

Adage

Starting from nothing and having only 15 minutes ahead, one cannot achieve great things...

5-Big Bang nucleosynthesis and the baryons

•

10¹⁰η

FIG. 26 Top : Dependence of $Y_{\rm P} = 4Y_{4\rm He}$ in η and observational constraints. Middle : Dependence of deuterium (to curve) and ³He (bottom curve) in η with observational constraints. The ³H has been added since it decays radioactively in ³He. Bottom : Dependence of ⁷Li in η with observational constraints. The ⁷Be has been added since it decays radioactively in ⁷Li. In all these plots, the width of the curves represents the $\pm \sigma$ uncertainty from nuclear rates and neutron lifetime.

FIG. 26 Top : Dependence of $Y_P = 4Y_{^{4}He}$ in η and observational constraints. Middle : Dependence of deuterium (to curve) and ³He (bottom curve) in η with observational con-

CORONA (0.5-2 million K)

Eruptive prominence

Why are stars as good site for nucleosynths s?

CONVECTION ZONE

First tier

1.5 million K

Ultraviolet rays

RADIATION ZONE

He

Θ

CORE

X rays Gamma rays

He

D V

œ

Random walk radiation pattern

15 million K

C

PHOTOSPHERE

Coronal streamer

Spicules Sunspots

Loop prominence

Prominence

Magnetic rope

A SIMPLE ESTIMATE OF THE CENTRAL PRESSURE

A SIMPLE ESTIMATE OF THE CENTRAL TEMPERATURE

 $P_c \approx \frac{1}{2} G \frac{M^2}{R^4}$ k $\rho_c = f\rho$ μm_{H}

 $=\frac{2Gm_{H}}{k}\frac{\mu_{c}M}{fR}$ T

Holmer Lane, assuming the Sun is made of gaz, deduced the values of the central temperature and of the central density of the Sun and obtained for the central density a value of 150 g cm-3 denser than The lead on Earth. What is wrong?

7. Is it sufficient?

ACTUALLY THEY ARE NOT SO APPROPRIATE AT FIRST SIGHT

kT= 8.68 10⁻⁸ T [keV]

FOR $T = 10^7 \text{ K}$, kT is about 1 keV

The coulomb potential
$$V = \frac{1.44Z_1Z_2}{d}$$
 MeV, d in Fermi [10⁻¹⁵m]

FOR d= 2 Fermi, V is about 700 keV

TWO EFFECTS ALLOW TO MITIGATE THIS DIFFICULTY

1) kT is the mean kinetic energy, but actually there is a maxwellian distribution with a branch at much higher energies

2) There is a Tunnel effet

8. Would stars exist without nuclear reaction?

GRAVITATIONAL SOURCE MAKE TOO SHORT LIFETIME, ANOTHER SOURCE IS NEEDED ALLOWING TO OBTAIN LONGER AGES

THE LIFETIME OF THE SUN IN CASE IT WOULD HAVE ONLY THE GRAVITATIONAL SOURCE WOULD BE GIVEN BY THE RATIO OF ITS GRAVITATIONAL ENERGY CONTENT ON ITS LUMINOSITY

$$\tau_{KH} = \frac{GM^2}{RL} \rightarrow \tau_{KH} = 10^7 \text{ years}$$

KELVIN-HELMHOLTZ TIMESCALE

NUCLEAR REACTIONS ARE RESPONSIBLE FOR THE LONG STELLAR LIFETIMES

THE LIFE OF A STAR IS GOVERNED BY THE GRAVITY. IT CONSISTS IN A SUCCESSION OF CONTRACTION PHASES AND OF PHASES WHEN CONTRACTION IS NEARLY STOPPED BECAUSE NUCLEAR REACTIONS ARE ACTIVE

9. What is the origin of oxygen?

THE NUCLEAR PATHWAY: IN H-BURNING REGIONS IN STARS MORE MASSIVE THAN 1.2 M_{sol} (NEAR SOLAR METALLICITY)

OXYGEN IS DESTROYED AT THE PROFIT OF NITROGEN

THE NUCLEAR PATHWAY: IN He-BURNING REGIONS OXYGEN IS SYNTHESIZED

He burning

Salpeter (1952) proposes the 3α reaction

$${}^{4}\text{He} + {}^{4}\text{He} = {}^{8}\text{Be} + \gamma$$

$${}^{8}\text{Be} + {}^{4}\text{He} = {}^{12}\text{C}^{\star}$$

$$\rightarrow {}^{12}\text{C} + \gamma$$

$${}^{12}\text{C} + {}^{4}\text{He} \rightarrow {}^{16}\text{O} + \gamma$$

Hoyle (1954) predicts the level of excitation at 7.7 MeV, explaining the observed ¹²C abundance.

$$\varepsilon_{3\alpha} \propto \rho^2 T^{25}$$

energy released by the reaction : 7.28 MeV

COMPOSITION OF A 25 Msol STAR AT THE END OF THE CORE H-BURNING PHASE AND OF THE CORE HE-BURNING PHASE (Z=0.02)

-QUESTION 5-

WHY IS THE CORE H-BURNING PHASE THE LONGEST PHASE?

Phase	Age [My.]	$\substack{\rm Mass}{\rm M_{\odot}}$	$\log\mathrm{T}_c$	$\log \rho_c$	\mathbf{q}_{cc}	\mathbf{q}_{env}	N/C	N/O
$\operatorname{End}\mathrm{H}$	6.60	24.20	7.875	1.518	0.090	0.000	0.31	0.11
End He	7.30	16.17	8.539	3.554	0.013	0.000	16.2	2.21
End C	7.32	16.00	9.127	6.563	0.000	0.464	19.1	2.38
End Ne	+50.4y	16.00	9.218	6.594	0.000	0.464	19.1	2.38
End O	+0.3 v	16.00	9.411	7.374	0.000	0.166	19.1	2.38
End Si	+0.1 y	16.00	9.787	8.638	0.001	0.062	19.1	2.38

- Energy released by nucleon is the largest
- The convective core is the largest
- The Luminosity tends to increase with time.

VARIATIONS OF THE INTEGRATED ABUNDANCE OF OXYGEN (STARTING FROM THE SURFACE) AT DIFFERENT STAGES IN A 25 M_{sol} MODEL. THE GREY PART IS EXPECTED TO REMAIN LOCKED INTO THE REMNANT

10. How this new syntehsized oxygen is ejected?

STELLAR YIELDS AS A FUNCTION OF THE INITIAL MASS FOR SINGLE NON-ROTATING SOLAR METALLICITY STARS

$$M_i(M_r) = \int_{M_r}^M X_i(m_r) \mathrm{d}m_r$$

Stellar yield= $M_i(M_r)-(M-M_r)X_i(m_r,t=0)$

STARS ARE ONLY ONE ELEMENT IN THE BROAD PICTURE

The life of stars, or the great cycle of matter

Main steps:

- Collapse of a cloud
- Nuclear reactions ignite
- Mass loss and/or explosion
- Induced star formation

11. The oxygen in the sun

Solar abundances revisited

logarithmic scale with H defined to have 12.00

Element	Anders & Grevesse (1989)	Asplund et al. (2005)	Mass fractions Decreased
Carbon	8.56+/-0.06	8.39+/-0.05	-32%
Nitrogen	8.05+/-0.04	7.80+/-0.05	-44%
Oxygen	8.93+/-0.03	8.66+/-0.05	-54%

$C+N+O \rightarrow 0.015 \qquad C+N+O \rightarrow 0.080$

- 3D hydrodynamical solar model atmosphere
- Non-LTE line formation when necessary
- Atomic and molecular lines with improved data

Table 3

Comparison of the solar neutrino fluxes measured by Borexino with the SSM expectations and a global fit which includes all experimental results obtained with solar, reactor, accelerator neutrinos.

Solar neutrino flux	GS98 (cm ⁻² s ⁻¹) high metallicity Z/X = 0.0229	AGS09 (cm ⁻² s ⁻¹) high metallicity Z/X = 0.0178	Experimental results (Borexino)	Global fit including solar, reactor, accel. data [11] (cm ^{-2} s ^{-1})
рр	5.97 (1 \pm 0.007) \times 10 ¹⁰	$6.04~(1\pm0.007)\times10^{10}$	6.6 (1 ± 0.106) × 10 ¹⁰	$5.97^{+0.037}_{-0.033} imes 10^{10}$
⁷ Be	$5.00~(1\pm 0.07)\times 10^{9}$	$4.56 (1 \pm 0.07) \times 10^9$	$4.43\pm0.22\times10^9$	$4.80^{+0.24}_{-0.22} \times 10^9$
pep	$1.44~(1\pm 0.012)\times 10^{8}$	$1.47~(1\pm0.012)\times10^{8}$	$1.63\pm0.35\times10^{8}$	$1.448 \pm 0.013 \times 10^8$
¹³ N	$2.96 (1 \pm 0.14) \times 10^8$	$2.17 (1 \pm 0.14) \times 10^8$		$\leq 13.7 \times 10^{8}$
¹⁵ O	$2.23 (1 \pm 0.15) \times 10^8$	$1.56 (1 \pm 0.15) \times 10^8$	$<7.7 \times 10^8$ total CNO	\leq 2.8 × 10 ⁸
¹⁷ F	$5.52 (1 \pm 0.17) \times 10^8$	$3.40 (1 \pm 0.16) \times 10^8$		$\leq 8.5 \times 10^7$
⁸ B	$5.58~(1\pm0.14)\times10^{6}$	$4.59~(1\pm 0.14)\times 10^{6}$	$5.2\pm0.3\times10^{6}$	$5.16^{+0.13}_{-0.09} \ {}^{+0.30}_{-0.26} \times 10^6$

Bellini 2016

Conclusion

- To make a single element, we need the whole Universe
- Abundances in the Universe integrate over time many fascinating complex processes
- Nucleosynthesis is a part of the quest of the origins

Georges Lemaître

17 Jul 1894 – 20 Jun 1966

The evolution of the world can be compared to a display of fireworks that has just ended: some few red wisps, ashes and smoke. Standing on a well-chilled cinder, we see the slow fading of the suns, and we try to recall the vanished brilliance of the origin of worlds.

AT THE CENTERS OF STARS, PHYSICAL CONDITIONS ARE APPROPRIATE FOR ACTIVATING NUCLEAR REACTIONS

-54-THE DIFFERENT SITES

Merging Neutron Stars Dying Low Mass Stars Exploding Massive StarsBig BangExploding White DwarfsCosmic Ray Fission

Based on graphic created by Tennifer Johnson

1 H	Element Origins													2 He			
3	4											5	6	r z	8	9	10
Li	Be											B	C		0	F	Ne
11	12										13	14	15	16	17	18	
Na	Mg										Al	Si	P	S	CF	Ar	
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba		Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
87 Fr	88 Ra																

Merging Neutron Stars Dying Low Mass Stars Exploding Massive StarsBig BangExploding White DwarfsCosmic Ray Fission

Based on graphic created by Tennifer Johnson