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I. Motivation



XXX Integrable Spin chain

Very easy to go From 2 (= Shortest length for periodic spin
chain) to N (= any length) while keeping Integrability:

H =
N∑
α=1

(
σx
ασ

x
α+1 + σy

ασ
y
α+1 + σz

ασ
z
α+1

)

Is there an analogous statement for
classical integrable σ-models ?

To answer this question, one needs to review and use
reinterpretation [B. Vicedo 1701.04856] of integrable
σ-models as realisations of Affine Gaudin Models



II. Classical Finite Gaudin models



Poisson Manifold

Notations:
I Simple Lie algebra f - Basis (Ia) - Structure constants f ab

c
I Opposite of the Killing form κab = κ(Ia, Ib) ; κabκ

bc = δc
a

I Quadratic Casimir C12 = κabIa ⊗ Ib = Ia ⊗ Ia ∈ f⊗ f

Poisson manifold PG of Gaudin model with N sites
= Cartesian product of N copies of f∗

I Define for any J ∈ f: Ja = κ(Ia, J)

I The algebra F(PG) of functions on PG is generated by N
copies of (Ja) equipped with Kirillov-Kostant Poisson
Bracket (P.B.)



Sites

I Each set
(
Ja

(α)

)
is formally attached to a site α

I Commutation between different sites{
Ja

(α), J
b
(β)

}
= δαβ f ab

c Jc
(α)

This P.B. may be rewritten in tensorial notations as

{J(α)1, J(β)2} = δαβ[C12, J(α)1]

where

J(α) = Ia ⊗ Ja
(α) ∈ f⊗F(PG)



Lax matrix
∗ Fundamental object sustaining Hamiltonian Integrability

L(z, t) =
N∑
α=1

J(α)(t)
z − zα

+ Ω

with z the spectral parameter

zα is the position in the spectral plane of the site α

∗ Ω ∈ f is a constant (vanishing P.B.)
∗ Possible to show that

{L1(z),L2(z ′)} = [r12(z, z ′),L1(z)− L1(z ′)]

with
r12(z, z ′) = C12/(z − z ′)

classical antisymmetric r -matrix



Quadratic Hamiltonian

Define the spectral parameter dependent quantity

H(z) = 1
2κ(L(z),L(z))

P.B. of L(z) is a commutator

→ {H(z),H(z ′)} = 0
→ {H(z ′),L(z)} = [M(z ′, z),L(z)]

with
M(z ′, z) =

L(z ′)
z − z ′

Next step: Extract/Define the Hamiltonian from H(z)



Quadratic Hamiltonians

H(z) = ∆∞ +
N∑
α=1

(
∆α

(z − zα)2 +
Hα

z − zα

)
∆∞ = 1

2κ(Ω,Ω) is a constant and ∆α = 1
2κ(J(α), J(α)) is an

invariant of the Kirillov-Kostant Poisson Bracket
→ Residue of H(z) in zα

Hα =
∑
β 6=α

κ(J(α), J(β))

zα − zβ
+ κ(J(α),Ω)

Hα =
∑
β 6=α

κabJa
(α)J

b
(β)

zα − zβ
+ κ(J(α),Ω)

The Hα’s are in involution:

{Hα,Hβ} = 0



Hamiltonian and Lax Pair
Hamiltonian = Linear combination of the Hα’s:

H =
N∑
α=1

cαHα

All this implies

dL(z)

dt
≡ {H,L(z)} = [M(z),L(z)]

=⇒ Lax Pair

L(z) =
N∑
α=1

J(α)

z − zα
+ Ω

M(z) =
N∑
α=1

cα
J(α)

z − zα



Example of realisation for f = sl(2,R)

L(z) =
N∑
α=1

1
z − zα

(
JH

(α) 2JF
(α)

2JE
(α) −JH

(α)

)
+

(
0 0
−1 0

)
Realisation: Do N times the following
I Take canonical coordinates (x ,p)

I Define

JH = xp JE = − 1
2p2 JF = 1

2x2

=⇒ Poisson Map from R2N to PG ' R3N

I Quadratic Hamiltonians

Hα = x2
α +

∑
β 6=α

(xαpβ − xβpα)2

zα − zβ



Coupling and Decoupling

∗ Coupling between the N particles in expression of Hα comes
from the second term in

Hα = x2
α +

∑
β 6=α

(xαpβ − xβpα)2

zα− zβ

∗ Coupling depends on how far the sites of the Gaudin model
are from each other (in the spectral plane)
∗ Decoupling of the last particle:

Maintain to fixed value all zα for α = 1, · · · ,N − 1
while sending zN →∞

∗ How to “implement” the N particles is very simple !
∗ Same kind of mechanism for Affine Gaudin Models and thus
for Integrable σ-models



Remarks: (Unreduced) Neumann Model

I The quadratic Hamiltonians

Hα = x2
α +

∑
β 6=α

(xαpβ − xβpα)2

zα − zβ

correspond (for zα ≡ ω2
α) to the Uhlenbeck’s [Uhlenbeck ’82]

conserved quantities of the Neumann model
I ‘Unreduced’ Neumann model is a realisation of sl(2,R)

Gaudin model [Kuznetsov’ 1992] (see also [S. Lacroix’s PhD thesis,

Integrable models with twist function and affine Gaudin models, 1809.06811] )
I Remark: Neumann model (N = 3) and spinning strings in

AdS5 × S5 [G. Arutyunov, S. Frolov, J. Russo and A. Tseytlin ’03, G.

Arutyunov, J. Russo and A. Tseytlin ’04]



Generalisation and Summary

I Generalisation of Gaudin models to higher-order poles
known [Feigin Frenkel Toledano Laredo ’10]

I How to go from 1 to N ? Add sites
I How to decouple one site ? Send it to∞
I Important: {J(α), J(β)} ∝ δαβ

L(z) =
N∑
α=1

J(α)

z − zα
+ Ω

H = 1
2

N∑
α=1

cα res
zα

κ(L(z),L(z))



Summary: Assembling LEGO bricks

L(z) =
3∑

α=1

J(α)

z − zα
+

4∑
α̃=1

J(α̃)

z − z̃α
+ Ω

Possible to couple Gaudin models associated with
same Lie algebra f



III. Classical Affine Gaudin Models



∗ Defined at Hamiltonian level
∗ Models which are integrable by construction
∗ One of the main difficulties = Perform the Legendre transform
∗ Many levels:
I Formal: Affine Kac-Moody algebra associated with f

I Intermediate: f-valued connections
I Realisation level: Integrable σ-models as realisations of

Affine Gaudin Models
At the end, we present an action and Lagrangian expression
of the Lax pair satisfying the zero curvature equation

[∂x + L(z, x , t) , ∂t +M(z, x , t)] = 0

Spatial component L(z, x) of Lax pair ≡ Lax matrix



Analogy

Finite case Affine case

J(α) = Ia ⊗ Ja
(α) `(α)∂x + J(α)(x)

J(α)(x) = Ia ⊗
∑

n∈Z
(
Ja

(α)

)
ne−inx

L(z) =
∑N

α=1
J(α)

z−zα ϕ(z)∂x + Γ(z,x)

ϕ(z) =
N∑
α=1

`(α)

z − zα
and Γ(z, x) =

N∑
α=1

J(α)(x)

z − zα

I ϕ is called the Twist function
I Γ is called the Gaudin Lax matrix



Lax matrix

I So far, we have ϕ(z)∂x + Γ(z, x)

I For field theory we need to construct ∂x + L(z, x)

=⇒ The Lax matrix of the integrable field theory is

L(z, x) = ϕ(z)−1Γ(z, x)

I Zeroes of ϕ(z) correspond to poles of L(z)

I P.B. {Γ, Γ} and {L,L} are determined by ϕ and they
ensure Hamiltonian integrability

ϕ controls the algebraic structure behind integrability



Datum defining an Affine Gaudin Model

With each site α one associates:
I Its position zα in spectal plane
I Its multiplicity mα ∈ N∗

I mα numbers `αp , called the levels, p ∈ {0, · · · ,mα − 1}
I mα currents Jαp (x)

ϕ(z) =
∑
α

mα−1∑
p=0

`αp
(z − zα)p+1 − `

∞

Γ(z, x) =
∑
α

mα−1∑
p=0

Jαp (x)

(z − zα)p+1

`αmα−1 6= 0 =⇒ Multiplicity = Order of the pole zα of ϕ(z)

I Choice of Linear Combination of Quadratic Hamiltonians



Datum defining an Integrable σ-model

With each site α one associates:
I Its position zα in spectal plane
I Its multiplicity mα ∈ N∗

I mα numbers `αp , called the levels, p ∈ {0, · · · ,mα − 1}
I mα currents Jαp (x)

ϕ(z) =
∑
α

mα−1∑
p=0

`αp
(z − zα)p+1 − `

∞

Γ(z, x) =
∑
α

mα−1∑
p=0

Jαp (x)

(z − zα)p+1

`αmα−1 6= 0 =⇒ Multiplicity = Order of the pole zα of ϕ(z)

I Choice of Linear Combination of Quadratic Hamiltonians
I Choice of Realisation for the currents Jαp (x)



Coupling two Affine Gaudin Models

I Start with
I AGM1 for Lie algebra f with sites z1

α and levels `αp
1

I AGM2 for same Lie algebra f with sites z2
α and levels `αp

2

I What is easy to understand:
Build the AGM with sites

(
z1
α, z2

α+
1
γ

)
and levels

(
`αp

1, `αp
2)

I Result:
Decoupling in the limit γ → 0

I What requires more work: Choice of linear combination for
the Hamiltonian which is coherent with this scenario

I At the Hamiltonian level, more or less the end of the story !



Takiff currents and their realisations

∗ Poisson brackets{
Jαp 1(x), Jβq 2(y)

}
= δαβ

([
C12, Jαp+q 1(x)

]
δxy − `αp+q C12 δ

′
xy

)
if p + q < mα{

Jαp 1(x), Jαq 2(y)
}

= 0 if p + q ≥ mα

∗ For σ-models, Realisations of these currents done in terms of
(g,X ) with fields g and X valued respectively in Lie group F
and Lie algebra f

∗ Exception = Non-abelian T-dual



List of known Building blocks
Model Twist function ϕ(z) Realisation of the Gaudin Lax matrix Γ(z, x)

PCM + WZ K−K−1k2

(z−K−1k)2 − 2k
z−K−1k

− K (K−K−1k2) j(x)

(z−K−1k)2 + X (x)−k j(x)−k W (x)

z−K−1k

PCM K
z2 − K K j(x)

z2 + X (x)

z

hYB K
z2 − K K j(x)−Rg X (x)

z2 + X (x)

z

NATD K
z2 − K m(x)

z2 + K ∂xv(x)+[m(x),v(x)]

z

iYB K/(2cη)

z−cη + −K/(2cη)

z+cη − K
1−c2η2

1
2c

cX (x)−Rg X (x)+ K
η

j(x)

z−cη + 1
2c

cX (x)+Rg X (x)− K
η

j(x)

z+cη

λ K/(2α)

z−α + −K/(2α)

z+α
− K

1−α2
X (x)−k j(x)−k W (x)

z−α − g(x)(X (x)+k j(x)−k W (x))g(x)−1

z+α

j = g−1∂xg and IWZ [g] =

∫∫
dt dx κ

(
W ,g−1∂tg

)



Difference between PCM and (PCM + WZ)

Model Twist function ϕ(z) Gaudin Lax matrix Γ(z, x)

PCM + WZ K−K−1k2

(z−K−1k)2 − 2k
z−K−1k − K (K−K−1k2) j(x)

(z−K−1k)2 + X(x)−k j(x)−k W (x)
z−K−1k

PCM K
z2 − K K j(x)

z2 + X(x)
z

∗ Both PCM and (PCM + WZ) correspond to a single site of
multiplicity 2 (double pole of ϕ, which admits also two zeros
in both cases)

ϕ(z) =
`1

(z − z0)2 +
`0

z − z0
− `∞

Γ(z, x) =
J1(x)

(z − z0)2 +
J0(x)

z − z0

∗ But for PCM `0 = 0 (which is clear from P.B. of currents)



Poles and zeroes of the twist function

∗ Two ‘starting’ sets of parameters
I Poles zα of ϕ(z) and levels `αp
I Poles zα and zeroes ζi of ϕ(z)

ϕ(z) = −`∞

M∏
i=1

(z − ζi)∏
α

(z − zα)mα

with
M =

∑
α

mα

Suppose all ζi are real and simple

∗ Advantage and drawback of each set



Poles and zeroes of the twist function

∗ Two ‘starting’ sets of parameters
I Poles zα of ϕ(z) and levels `αp
I Poles zα and zeroes ζi of ϕ(z)

ϕ(z) = −`∞

M∏
i=1

(z − ζi)∏
α

(z − zα)mα

with
M =

∑
α

mα

Suppose all ζi are real and simple

∗ Advantage and drawback of each set



Basis for Hamiltonian
I Most convenient basis of commuting quadratic charges:

Qi = − 1
2ϕ′(ζi)

∫
dx κ

(
Γ(ζi , x), Γ(ζi , x)

)
I Sufficient condition for Lorentz invariance:

H =
M∑

i=1

εi Qi with ε2i = 1

I For examples worked out: To be able to perform Legendre
transform, same number of εi equal to 1 than to −1

=⇒ L±(z, x) =M±L = ±2
∑

i ∈ I±

1
ϕ′(ζ±i )

Γ(ζ±i , x)

z − ζ±i

Recall for PCM

ϕ(z) = K
1− z2

z2 and L±(z) =
g−1∂±g
1∓ z



Basis for Hamiltonian
I Most convenient basis of commuting quadratic charges:

Qi = − 1
2ϕ′(ζi)

∫
dx κ

(
Γ(ζi , x), Γ(ζi , x)

)
I Sufficient condition for Lorentz invariance:

H =
M∑

i=1

εi Qi with ε2i = 1

I For examples worked out: To be able to perform Legendre
transform, same number of εi equal to 1 than to −1

=⇒ L±(z, x) =M±L = ±2
∑

i ∈ I±

1
ϕ′(ζ±i )

Γ(ζ±i , x)

z − ζ±i

I Importance of the zeroes of ϕ for constructing higher order
local charges [S. Lacroix, M.M., B. Vicedo ’17]



IV. From 1 PCMk to N coupled PCMkr



I One (PCM + WZ): One double pole z1 and two simple
zeroes ζ±1

I N (PCM + WZ): N double poles zr and 2N simple zeroes ζ±r

Difficulty: Legendre Transform



ϕ±(z) ≡
∏N

r=1(z − ζ±r )∏N
r=1(z − zr )

and ϕ(z) ≡ −`∞ϕ+(z)ϕ−(z)

S
[
g(1), . . . , g(N)

]
=

∫∫
dt dx

N∑
r ,s=1

ρrs κ
(
j(r)
+ , j(s)

−
)

+
N∑

r=1

kr IWZ
[
g(r)
]

ρrr = 1
4`
∞(ϕ′+,r(zr)ϕ−,r(zr)− ϕ+,r(zr)ϕ

′
−,r(zr)

)
ρrs = 1

2`
∞ϕ+,r(zr)ϕ−,s(zs)

zr − zs
for r 6= s

kr = 1
2`
∞(ϕ′+,r(zr)ϕ−,r(zr) + ϕ+,r(zr)ϕ

′
−,r(zr)

)
ϕ±,r(z) = (z − zr)ϕ±(z)

All g(r) take values in the same Lie group F and
j(r)
± = g(r)−1∂±g(r) ∈ f



∗ Number of parameters:
I 2N zeros ζ±i and N poles zr of ϕ together with `∞

I Redundacy (Dilatation and Translation)
=⇒ 3N − 1 free parameters

I While N2 + N coefficients in the action (ρrs and kr )

∗ Lagrangian expression of Lax pair:

L±(z, x , t) =
N∑

r=1

ϕ±,r (zr )

ϕ±,r (z)
j(r)
± (x , t)

∂+L− − ∂−L+ + [L+,L−] = 0

Note that
L±(zr , x , t) = j(r)

± (x , t)



Global symmetries

S
[
g(1), . . . ,g(N)

]
=

∫∫
dt dx

N∑
r ,s=1

ρrs κ
(
j(r)
+ , j(s)

−
)
+

N∑
r=1

kr IWZ
[
g(r)

]
Recall that j(r)

± = g(r)−1∂±g(r)

I On the left: F × · · · × F

(g(1), . . . ,g(N)) 7−→ (h1g(1), . . . ,hNg(N)), hr ∈ F

I On the right: Fdiag

(g(1), . . . ,g(N)) 7−→ (g(1)h, . . . ,g(N)h), h ∈ F



Examples for N = 2

∗ First example:

z1 = −z2 = γ−1, ζ±1 = ±1 + γ−1, ζ±2 = ±1− γ−1

ρ11 = ρ22 =
`∞

4
(2− γ2), k1 = −k2 = −`

∞

8
γ3,

ρ12 = −`
∞

16
γ(γ − 2)2, ρ21 =

`∞

16
γ(γ + 2)2.

∗ Second example: For

z1 = −z2 = γ−1, ζ±1 = ±
√

1 + γ−2 +
√

1 + 4γ−2,

ζ±2 = ∓
√

1 + γ−2 −
√

1 + 4γ−2.

k1 = k2 = 0



V. Conclusion



Comments

I Construction of Integrable σ-models from a given set of
parameters ...

I ... encoded in a generic rational function with N double
poles and 2N simple zeroes

I Very nice to see how these parameters of (Hamiltonian)
integrability show up in the expressions of both the
action and the Lagrangian Lax pair !
→ Importance of the twist function

Hamiltonian integrability no more ‘hidden’
in Lagrangian formulation

I For N=1: Two free parameters = Same number as the
number of coefficients (ρ11 and k1) in the action



Key point = observables associated with different sites mutually
Poisson commute

Model Twist function ϕ(z) Realisation of the Gaudin Lax matrix Γ(z, x)

iYB K/(2cη)
z−cη +

−K/(2cη)
z+cη − K

1−c2η2
1
2c

cX(x)−Rg X(x)+ K
η

j(x)

z−cη + 1
2c

cX(x)+Rg X(x)− K
η

j(x)

z+cη

λ
K/(2α)

z−α +
−K/(2α)

z+α
− K

1−α2
X(x)−k j(x)−k W (x)

z−α − g(x)(X(x)+k j(x)−k W (x))g(x)−1

z+α

[T.J. Hollowood J.L. Miramontes D.M. Schmidtt ’14, B. Vicedo ’15]



Other models

I We have also determined the action coupling One hYB to
N − 1 (PCM+WZ) and the expression of the Lax pair at
Lagrangian level
Twist function is the same as for One PCM + N − 1
(PCM+WZ)

I One should recover and extend example of two Coupled
integrable λ-models constructed in [G. Georgiou and K. Sfetsos

1809.03522 1812.04033]

I Playground is infinite...
I But remember that Same Lie algebra



Generalisation to Symmetric space σ-models ?

I Their nature as Affine Gaudin Models is different
I Called Cyclotomic Affine Gaudin Models
I Comes from Z2 grading
I More precisely Gauge invariance associated with a

constraint
I Comes from special role of infinity in spectral plane
I If F/G symmetric space, one expects to be able to

construct a
F×N/Gdiag integrable σ-model

I Corresponds to gauging a subgroup of Fdiag (Symmetry on
the right)



Quantum level

I Renormalisation group flow: we already know it will be
interesting from [G. Georgiou and K. Sfetsos 1809.03522 1812.04033]

[G. Georgiou P. Panopoulos E. Sagkrioti and K. Sfetsos 1906.00984]

I If integrability preserved at the quantum level: S-matrix ?
I Use of Affine Gaudin Model Approach at quantum level

[B. Vicedo ’17, S. Lacroix, B. Vicedo, and C. A. S. Young ’18 ’18, S. Lacroix PhD

thesis]



From N to 1...


