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l. Motivation



XXX Integrable Spin chain

Very easy to go From 2 (= Shortest length for periodic spin
chain) to N (= any length) while keeping Integrability:

N
- X X y z _z
H= E <0a0a+1 +o%o +0a0a+1>
a=1

Is there an analogous statement for
classical integrable o-models ?

To answer this question, one needs to review and use
reinterpretation [B. Vicedo 1701.04856] of integrable
o-models as realisations of Affine Gaudin Models



Il. Classical Finite Gaudin models



Poisson Manifold

Notations:
> Simple Lie algebra f - Basis (/?) - Structure constants 2,
> Opposite of the Killing form x = k(12, I°) ; ki gpKP° = 6S
» Quadratic Casimit C1p = kgpplP R IP =1L, P cf®f

Poisson manifold Pg of Gaudin model with N sites
= Cartesian product of N copies of §*

» Define for any J € f: J2 = k(/I2,J)

» The algebra F(Pg) of functions on Pg is generated by N
copies of (J?) equipped with Kirillov-Kostant Poisson
Bracket (P.B.)



Sites

» Each set (J("”a)) is formally attached to a site «
» Commutation between different sites

b - b
{J(aa)v J(ﬁ)} = 0ap 5 U0

This P.B. may be rewritten in tensorial notations as

{Jia)q: Ji)2} = daslCr2, Sy

where

Joy =la® G,y €7®F(Pg)




Lax matrix

x Fundamental object sustaining Hamiltonian Integrability

N
Lzt = uOLC

N
N

a=1
with z the spectral parameter
z,, is the position in the spectral plane of the site «

x Q € fis a constant (vanishing P.B.)
x Possible to show that

{L1(2), Lao(2)} = [n2(2, 2), La(2) — L1(Z'))]
with
n2(z,2') = Ci2/(z - 2')

classical antisymmetric r-matrix



Quadratic Hamiltonian

Define the spectral parameter dependent quantity
H(z) = 3x(L(2), L(2))

P.B. of L(z) is a commutator

— {H(2),H(Z")} =0
— {H(Z'),L(2)} = [M(Z, 2), L(2)]
with .
M(Z,z) = ZL(_ZZ),

Next step: Extract/Define the Hamiltonian from H(z)



Quadratic Hamiltonians

oA Ha
H(Z)—Aoo+z1<(z_za)2 +Z_za)

A = 5£(2,9Q) is a constant and A, = 3£(J(a), J(a)) is @an
invariant of the Kirillov-Kostant Poisson Bracket
— Residue of H(z) in z,

k(J(a)s d))
HOL = Z ﬁ —|— /{(J(Oé)? Q)

K
Ha = Z 2 ()" (8) + K’(J(a)vﬂ)

The H,’s are in involution:
{H.,Hz} =0



Hamiltonian and Lax Pair
Hamiltonian = Linear combination of the H,’s:

N
H=>" cuHa
a=1
All this implies
W2 _ (H.1(2)) = M), L(2)]
= Lax Pair
)
Lz)=>" ﬁ +Q
a=1 @

2

e
M(z) =3 cay )
a=1 «




Example of realisation for § = sl(2, R)

N J(H 2J(F) 0 0
= Z « /(‘); _.I_
z—2z,\ 2J;, —J < -1 0 )

a=1 (@) (a)

Realisation: Do N times the following
» Take canonical coordinates (x, p)
» Define

— Poisson Map from R?N to Pg ~ R3N
» Quadratic Hamiltonians

(XaPs — X
a_X+Z aPB 5Pa )
B#a




Coupling and Decoupling

«x Coupling between the N particles in expression of H, comes
from the second term in

2
X, — X
Ho = 32 4 3 ol = XoP0)
Zn — 2
o

x Coupling depends on how far the sites of the Gaudin model
are from each other (in the spectral plane)

x Decoupling of the last particle:

Maintain to fixed value all z, foraa=1,--- ,N —1
while sending zy — oo

* How to “implement” the N particles is very simple !

+ Same kind of mechanism for Affine Gaudin Models and thus
for Integrable o-models



Remarks: (Unreduced) Neumann Model

» The quadratic Hamiltonians

2
X, — X
Ho = x2 1 3 VePa = XoPn)
Zo — 23
B

correspond (for z, = w?) to the Uhlenbeck’s [Unlenbeck '82]
conserved quantities of the Neumann model

» ‘Unreduced’ Neumann model is a realisation of s((2, R)
Gaudin model [Kuznetsov' 1992] (see also [S. Lacroix's PhD thesis,
Integrable models with twist function and affine Gaudin models, 1809.06811] )

» Remark: Neumann model (N = 3) and spinning strings in
AdS5 X 85 [G. Arutyunov, S. Frolov, J. Russo and A. Tseytlin 03, G.
Arutyunov, J. Russo and A. Tseytlin '04]



Generalisation and Summary

» Generalisation of Gaudin models to higher-order poles
known [Feigin Frenkel Toledano Laredo *10]

» How to go from 1 to N ? Add sites
» How to decouple one site ? Send it to co
> Important: {J(a), J(ﬂ)} X 5aﬂ

N

Lz)=3" o g

Z— 2,




Summary: Assembling LEGO bricks

3 4
T S ) Ja | q
(Z)_Zz—za+zz—2a+

a=1 a=
X x X x N Das
21 22 %3 %Ql e tm

Possible to couple Gaudin models associated with
same Lie algebra §




lll. Classical Affine Gaudin Models



« Defined at Hamiltonian level

x Models which are integrable by construction

x One of the main difficulties = Perform the Legendre transform
x Many levels:

» Formal: Affine Kac-Moody algebra associated with §
» Intermediate: f-valued connections

> Realisation level: Integrable oc-models as realisations of
Affine Gaudin Models

At the end, we present an action and Lagrangian expression
of the Lax pair satisfying the zero curvature equation

[Ox + L(z,x,t), Ot + M(z,x,t)] =0

Spatial component £(z, x) of Lax pair = Lax matrix



Analogy

Finite case

Affine case

J(a) =L ® J(aa)

Jia)(X) =

Li)Ox + Ja)(X)
Ia ® ZHGZ (J(aa)) neimx

Ja
L(z) =N | o

¢(2)0x +T(z,x)

a=1

= M
_Zz—za

and

2

M(z,x)

» o is called the Twist function
» [ is called the Gaudin Lax matrix




Lax matrix

» So far, we have ¢(2)0x + I'(z, x)
» For field theory we need to construct dx + £(z, x)
= The Lax matrix of the integrable field theory is

L(z,x) =¢(2)7'T(z,x)

» Zeroes of p(z) correspond to poles of £(2)

» PB. {l,I'} and {£, L} are determined by ¢ and they
ensure Hamiltonian integrability

 controls the algebraic structure behind integrability




Datum defining an Affine Gaudin Model

With each site « one associates:
> |ts position z, in spectal plane
> lts multiplicity m, € N*
> m, numbers (g, called the levels, p € {0,--- ,m, — 1}
> m, currents Jg(x)

Mo —1
=>. Z W—”’O
ma—1 Ja(X)

0=L % G

(5. _1 # 0 = Multiplicity = Order of the pole z, of ¢(2)
» Choice of Linear Combination of Quadratic Hamiltonians



Datum defining an Integrable oc-model

With each site o one associates:
> |ts position z, in spectal plane
> lts multiplicity m, € N*
> m, numbers /g, called the levels, p € {0,--- ,m, — 1}
> m, currents Jg(x)

Mo —1 /o
W(Z):Z Z (Z_Zp)p+1 — £
a  p=0
)
r(ZaX)ZZ (Z_pz )P
a  p=0

.1 # 0 = Multiplicity = Order of the pole z, of ©(2)
» Choice of Linear Combination of Quadratic Hamiltonians
» Choice of Realisation for the currents Jg(x)



Coupling two Affine Gaudin Models

Start with
> AGM; for Lie algebra f with sites z! and levels (5’
> AGMs, for same Lie algebra f with sites z2 and levels Zgz

What is easy to understand:
Build the AGM with sites (z},22 +1) and levels (¢57,¢5?)
Result:

Decoupling in the limit vy — 0
What requires more work: Choice of linear combination for
the Hamiltonian which is coherent with this scenario
At the Hamiltonian level, more or less the end of the story !



Takiff currents and their realisations

x Poisson brackets

{ 5 1(x), Jg 2(y)} = 5a5([C1z,J,?+q1(x)] Oxy — 34 g cmafxy)
ifp+q<m,
{Jg1(x),Jg2(y)} =0if p+qg>m,
x For o-models, Realisations of these currents done in terms of

(g, X) with fields g and X valued respectively in Lie group F
and Lie algebra f

« Exception = Non-abelian T-dual



List of known Building blocks

Model Twist function ¢(z) Realisation of the Gaudin Lax matrix I'(z, x)
K-—K—'k2 2k (K=K=K2)j(x) | X()—kj(x)—k W(x)
PCM + Wz (Z—K—TkZ — z—K—Tk K e—Kk=ke  + Z—K—k
= 5k g
K Kj(x)=ReX(X) | X(x)
hYB KK BR—RX0) 4 X
NATD K _K B 4 KO0+ m0.v()
. K/(2¢n) —K/(cn) K lCX(X)*RgX(X)Jr%I'(X) 1 CX(X)JngX(X)*%/(X)
iYB z—cn + z+cn 1—c2n2 2c z—cn + 2c z+cn
A K/QRa) + —K/@2a) K XX —kjX)—k W(X) _ gOOX(X)+kj(x)—k W(x)g(x) "
Z—a Zta 1—a? Z—a Z+a

j=9g 'oxg and ez [g] = // dt dx (W, g‘18,g)




Difference between PCM and (PCM + WZ)

Model Twist function ¢(z) Gaudin Lax matrix I'(z, x)
_ _K1K2) i —ki(x)—
POM + W2 | £h8s — e — K | LS 1 Xkt
K X
PCM K-K é(zx) + (Zx)

x Both PCM and (PCM + WZ) correspond to a single site of
multiplicity 2 (double pole of ¢, which admits also two zeros

in both cases)

lo o

Z— 2y
Jo(x)

14
o(2) = _120)2
0= 20

Z— 2

x But for PCM £9 = 0 (which is clear from P.B. of currents)




Poles and zeroes of the twist function

« Two ‘starting’ sets of parameters
» Poles z, of ¢(z) and levels l
» Poles z, and zeroes ¢; of p(z)

M=

(z—¢)
p(2) =~ —=

H(z — 2,) M

with

M= Z m,
Suppose all ; are real and simple

« Advantage and drawback of each set



Poles and zeroes of the twist function

« Two ‘starting’ sets of parameters
» Poles z, of ¢(z) and levels l
» Poles z, and zeroes (; of p(2)

M=

(z—¢)
o(2) =~ —=

H(z — 2,) M

with

M= Z m,
Suppose all ; are real and simple

« Advantage and drawback of each set



Basis for Hamiltonian
» Most convenient basis of commuting quadratic charges:

1
ol R I )

» Sufficient condition for Lorentz invariance:

Q=-

M
H=> ¢ Qwithe =1
i=1
» For examples worked out: To be able to perform Legendre
transform, same number of ¢; equal to 1 than to —1

1 (¢ %)
= Li(Zz,X)=MEL=22 ) ——l
Recall for PCM
122 g 'oig
o(z)=K e and Li(z)= Tz



Basis for Hamiltonian

» Most convenient basis of commuting quadratic charges:
1
Q = _QW(Ci)/dX “(r(fiax)ar(ChX))

» Sufficient condition for Lorentz invariance:

M
H=> € Qwith e =1
i=1

» For examples worked out: To be able to perform Legendre
transform, same number of ¢; equal to 1 than to —1

1 T(¢Ex)
P& z- ¢

= Li(Z2,X)=MEL=42 )
iely

» Importance of the zeroes of ¢ for constructing higher order
local charges [s. Lacroix, M.M., B. Vicedo '17]



IV. From 1 PCM, to N coupled PCM,,



» One (PCM + WZ): One double pole z; and two simple
zeroes (i

» N (PCM + W2Z): N double poles z, and 2N simple zeroes (i

Difficulty: Legendre Transform



[1r1(z = ¢7)

Y.z~ 2) and  ¢(z) = —*p(2)p-(2)

pi(2) =

N
S[g",...,g™M] //dl‘dX Prs K j+ ,j(s) +Zk hnz (9]
r,s=1

prr = 37 (‘P:L (2r)e—r(2r) — 90+,r(zr)S0’—,r(Zr))

1€oo@+ r(Zr) - s(2s)
Zy — Zg

ke = 30> (@;,r(zr)ﬁp—,r(zr) + 90+,r(zr)90’_,r(zr))

Prs = for r#s

p+,r(2) = (2 — 2r)ps(2)
All g(”) take values in the same Lie group F and
A7 = gN-19,90 ¢ §




x Number of parameters:
» 2N zeros (,.“—L and N poles z; of ¢ together with ¢/°
» Redundacy (Dilatation and Translation)
—> 3N — 1 free parameters
» While N + N coefficients in the action (ps and k;)

x Lagrangian expression of Lax pair:

0L —0 Ly+[L,L]=0

Note that
Li(zr,x, 1) = (x, 1)



Global symmetries

N N
3[9(1)’.__’Q(N)] - // dt dx Z prslﬁl(._(,_r),j(_s))+z kr /Wz[g(r)]
r=1

r,s=1

Recall that /") = g(D=19,g(»
» Ontheleft: Fx--- x F

(g, g™y — (g™, ing™). hr e F
> On the right: Fyjyg

9",....gM)— (gMh,....gdMh), heF



Examples for N = 2

x First example:
n=-z=y" =1ty G=+1-7"
P11 = P22 = ) 1=~ = 87’

EOO o

p12 = — ’Y(’Y 2)?, p21 = 157 (v +2)2

x Second example: For

z1=-2=7", szi\/1 2+ /1 +4q2
G=F1 172 V1142

ki =ko=0



V. Conclusion



Comments

Construction of Integrable o-models from a given set of
parameters ...

... encoded in a generic rational function with N double
poles and 2N simple zeroes

Very nice to see how these parameters of (Hamiltonian)
integrability show up in the expressions of both the
action and the Lagrangian Lax pair !

— Importance of the twist function

Hamiltonian integrability no more ‘hidden’
in Lagrangian formulation

For N=1: Two free parameters = Same number as the
number of coefficients (p11 and ki) in the action




Key point = observables associated with different sites mutually
Poisson commute

Model Twist function ¢(z) Realisation of the Gaudin Lax matrix I'(z, x)
VB K/(2en) | —K/(2cn) K 1 X()=ReX(X)+Kj(x) 4 eX(X)+RX(x)— £ j(x)
I z—cn + z+en 1= 2c z—cn 2c z+cn
A K/(2e) | —K/(2a) _ _K X()—kj(x) =k W(x) _ gOx)(X(x)+kj(x)—k W(x))g(x)""
Z—o Z+a 1—a? z—o Z+a

[T.J. Hollowood J.L. Miramontes D.M. Schmidtt *14, B. Vicedo '15]




Other models

» We have also determined the action coupling One hYB to
N — 1 (PCM+W2Z) and the expression of the Lax pair at
Lagrangian level
Twist function is the same as for One PCM + N — 1
(PCM+W2)

» One should recover and extend example of two Coupled
integrable A-models constructed in [G. Georgiou and K. Sfetsos
1809.03522 1812.04033]

» Playground is infinite...
» But remember that Same Lie algebra



Generalisation to Symmetric space o-models ?

vvvyyypy

vy

Their nature as Affine Gaudin Models is different
Called Cyclotomic Affine Gaudin Models
Comes from Z, grading

More precisely Gauge invariance associated with a
constraint

Comes from special role of infinity in spectral plane

If F/G symmetric space, one expects to be able to
construct a

F*N/Ggjag integrable o-model

Corresponds to gauging a subgroup of Fgjag (Symmetry on
the right)



Quantum level

» Renormalisation group flow: we already know it will be
interesting from [G. Georgiou and K. Sfetsos 1809.03522 1812.04033]
[G. Georgiou P. Panopoulos E. Sagkrioti and K. Sfetsos 1906.00984]

» If integrability preserved at the quantum level: S-matrix ?

> Use of Affine Gaudin Model Approach at quantum level
[B. Vicedo '17, S. Lacroix, B. Vicedo, and C. A. S. Young '18 '18, S. Lacroix PhD

thesis]
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