Exploring the landscape of eta-deformed AdS superstrings

Fiona Seibold

ETH zürich

- Integrability, duality and beyond -

04.06.2019

based on [arXiv:1811.07841] with B. Hoare and work in progress

Motivation

2018 Hoare Seibold, supergravity solutions for the $AdS_5 \times S^5$ superstrings

2016 Borsato Wulff, target space supergeometry and condition on R-matrix to give a supergravity solution
 Arutyunov Frolov Hoare Roiban Tseytlin; Tseytlin Wulff, solution of generalised supergravity equations of motion
 2015 Arutyunov Borsato Frolov, RR fluxes for a particular choice of R-matrix: not a supergravity solution!

Lunin Roiban Tseytlin, supergravity backgrounds for deformed $AdS_n \times S^n$ supercosets

2014 + Arutyunov Borsato Frolov, metric and B-field of the η -deformed AdS₅ × S⁵ superstring

2013 - Delduc Magro Vicedo, η -deformation of the symmetric space σ model action for the η -deformed AdS₅ × S⁵ superstring

2008 + Klimčík, integrability of the η -deformed PCM

2002 + Klimčík, η -deformation of the PCM

Motivation

- \blacksquare The η deformation
 - > The semi-symmetric space sigma model
 - > The η -deformed semi-symmetric space sigma model
- Example of the η-deformed AdS₂ × S² × T⁶ superstring
 The choice of *R*-matrix
 - The different backgrounds
- Example of the 2 parameter deformation of AdS₃ × S³ × T⁴
 The choice of *R*-matrix
 - The supergravity backgrounds
- Conclusion and open problems

The η -deformed semi-symmetric space sigma model

Semi-symmetric space sigma model

Sigma model on the supercoset \hat{G}/H :

- + \hat{G} is a supergroup with basic Lie superalgebra $\hat{\mathfrak{g}}$
- $\hat{\mathfrak{g}}$ admits a \mathbb{Z}_4 grading

even grading $\hat{\mathfrak{g}} = \mathfrak{g}^{(0)} + \mathfrak{g}^{(1)} + \mathfrak{g}^{(2)} + \mathfrak{g}^{(3)} \qquad [\mathfrak{g}^{(i)}, \mathfrak{g}^{(j)}] \in \mathfrak{g}^{(i+j \mod 4)}$ \longrightarrow subalgebra, identified with the Lie algebra of H

- introduce projectors $P^{(i)}$ projecting onto the spaces $\mathfrak{g}^{(i)}$
- there exists an ad-invariant bilinear form on $\hat{\mathfrak{g}}$ that we denote by STr

Semi-symmetric space sigma model

Action of the semi-symmetric space sigma model on the supercoset \hat{G}/H :

$$S[g \in \hat{G}] = -\frac{T}{4} (\gamma^{ij} - \epsilon^{ij}) \int d^2 \sigma \operatorname{STr}[g^{-1} \partial_i g P g^{-1} \partial_j g]$$
$$P = 2P^{(2)} + P^{(1)} - P^{(3)}$$

Properties:

- global left Ĝ symmetry $g \rightarrow g_0 g$
- local right H gauge symmetry $g \rightarrow gh$
- diffeomorphism and Weyl invariance, fermionic κ symmetry
- classical integrability

$\eta\text{-deformed semi-symmetric space sigma model}$

Action of η -deformed SSS σ M on the supercoset \hat{G}/H :

Delduc Magro Vicedo arXiv:1309.5850

$$S_{\eta}[g \in \hat{G}] \sim (\gamma^{ij} - \epsilon^{ij}) \int d^{2}\sigma \operatorname{STr}\left[g^{-1}\partial_{i}g P \frac{1}{1 - \eta R_{g}P}g^{-1}\partial_{j}g\right]$$
$$P = \frac{2}{1 - \eta^{2}}P^{(2)} + P^{(1)} - P^{(3)} \qquad R_{g} = \operatorname{Ad}_{g}^{-1}R\operatorname{Ad}_{g}$$

The deformation is governed by the linear operator $R: \hat{\mathfrak{g}} \rightarrow \hat{\mathfrak{g}}$, where

- *R* is skew-symmetric: STr[XR(Y)] = -STr[YR(X)]
- *R* satisfies the mcYBE: [R(X), R(Y)] R([R(X), Y] + [X, R(Y)]) = [X, Y]

Strength of deformation $\eta \in \mathbb{R}, \, \eta \to 0$ gives undeformed $\mathrm{SSS}\sigma\mathrm{M}$

This deformation preserves classical integrability

 η -deformed semi-symmetric space sigma model

• Defines an integrable deformation of the Green Schwarz string on various spaces, $AdS_5 \times S^5$, $AdS_3 \times S^3 \times T^4$, $AdS_2 \times S^2 \times T^6$...

• Are the resulting theories critical string theories (do they satisfy the standard supergravity equations of motion)?

• The R-matrix should be unimodular

Borsato Wulff arXiv:1608.03570

$$[X, Y]_R = [R(X), Y] + [X, R(Y)]$$

$$\sum_{b} (-1)^{[b]} \tilde{f}_{ab}{}^{b} = 0 \qquad [b] = 0 \text{ for bosonic generators} \\ [b] = 1 \text{ for fermionic generators}$$

 $\eta\text{-deformed semi-symmetric space sigma model}$

• A particular solution of the modified classical YBE is given by the Drinfel'd Jimbo R-matrix

• Relies on the choice of a Cartan-Weyl basis $\hat{g} = \{Cartan, E^+, E^-\}$ R(Cartan) = 0, $R(E^+) = -iE^+$, $R(E^-) = +iE^-$

• Superalgebras admit several inequivalent Dynkin diagrams

 \Rightarrow Inequivalent η -deformations! Supergravity solutions!

Example of the η -deformed AdS₂ × S² × T⁶ superstring

 $\eta\text{-deformation}$ of $\textit{AdS}_2\times\textit{S}^2$

• Curved part of the background described by the supercoset

$$\frac{\hat{G}}{H} = \frac{PSU(1,1|2)}{SO(1,1) \times SO(2)} \sim AdS_2 \times S^2 + 8 \text{ fermions}$$

• Dynkin diagrams of the complexified isometry algebra $\mathfrak{sl}(2|2)$

$$\bigcirc -\otimes -\bigcirc \qquad \otimes -\bigcirc -\otimes \qquad \otimes -\otimes -\otimes$$

• Most of the literature is based on the R-matrix associated to the distinguished Dynkin diagram

$$R_0(M)_{ij} = -i\epsilon_{ij}M_{ij}, \qquad \epsilon = \begin{pmatrix} 0 & + & + \\ - & 0 & + & + \\ - & - & 0 & + \\ - & - & - & 0 \end{pmatrix}$$

 $\left(\begin{array}{c} 0 \end{array} \right)$

 η -deformation of $AdS_2 \times S^2$: R-matrix

How to construct the R-matrices associated to the other diagrams?

How many inequivalent solutions do we expect?

- permutation of 4 elements → 24
 Action on su(1, 1) and su(2) should be left unchanged → 6
- Identify R-matrices related by $AdS \leftrightarrow S$

 \Rightarrow The 3 R-matrices correspond to the 3 inequivalent Dynkin diagrams

 $\rightarrow 3$

 $\eta\text{-deformation}$ of $\textit{AdS}_2\times\textit{S}^2$

• The 3 chosen R-matrices give the same metric for the η -deformed AdS $_2\times {\rm S}^2$ space $\kappa=\frac{2\eta}{1-\eta^2}$

$$\mathrm{d}s^2 = \frac{1}{1 - \kappa^2 \rho^2} \left(-(1 + \rho^2) \mathrm{d}t^2 + \frac{\mathrm{d}\rho^2}{1 + \rho^2} \right) + \frac{1}{1 + \kappa^2 r^2} \left((1 - r^2) \mathrm{d}\phi^2 + \frac{\mathrm{d}r^2}{1 - r^2} \right) + \mathrm{d}x^i \mathrm{d}x^i$$

 η -deformation of $AdS_2 \times S^2$: unimodularity

• Unimodularity of the 3 different Drinfel'd Jimbo R-matrices

 η -deformation of $AdS_2 \times S^2$: the supergravity solution

• One can construct a one-parameter family $a \in [0, 1]$ of supergravity backgrounds supporting the metric and B-field

Lunin Roiban Tseytlin arXiv:1411.1066

$$e^{-2\Phi} = e^{-2\Phi_0} \frac{(1 - \kappa^2 \rho^2)(1 + \kappa^2 r^2)}{P_a(\rho, r)}$$

$$F_3 = \frac{1}{2} dC_a \wedge J_2 + \frac{1}{12} \star (dC_a \wedge J_2 \wedge J_2 \wedge J_2)$$

$$F_5 = \frac{1}{2} (1 + \star) dA_a \wedge \operatorname{Re} \Omega_3$$

$$\begin{split} P_a(\rho,r) &= 1 + \kappa^2 (a^2(r^2 - \rho^2) + r^2 \rho^2) - 2\kappa \sqrt{1 - a^2} \sqrt{1 + a^2 \kappa^2} r\rho \\ C_a &= \frac{2}{a\sqrt{P(\rho,r)}} \Big[\sqrt{1 - a^2} - \kappa \sqrt{1 + a^2 \kappa^2} \rho r \Big] \\ A_a &= \frac{\sqrt{2}}{\sqrt{P(\rho,r)}} \Big[\sqrt{1 + a^2 \kappa^2} (\rho dt + r d\varphi) + \kappa \sqrt{1 - a^2} (r dt - \rho d\varphi) \Big] \end{split}$$

• The supergravity background corresponds to the a = 1 point

 η -deformation of $AdS_2 \times S^2$: limits

• Various limits of the 3 backgrounds

All three have the same plane-wave limit

pp wave background whose l.c.g.f. model is the Pohlmeyer reduced theory, namely the $\mathcal{N}=2$ supersymmetric sine-Gordon model

What did this example teach us?

- R-matrices associated to inequivalent Dynkin diagrams may lead to different deformations
- The R-matrix associated to the fully fermionic Dynkin diagram is unimodular
- Accordingly, the resulting background solves the supergravity equations of motion

Questions that remain:

- Do the other supergravity backgrounds with $a \in [0, 1)$ correspond to integrable models?
- If yes, which R-matrix to use?
- Why is the maximal deformation limit not giving the mirror model?

Example of the 2-parameter deformation of the $AdS_3 \times S^3 \times T^4$ superstring

bi-Yang-Baxter deformation of $AdS_3 \times S^3$

• Curved part of the background described by the supercoset

$$\frac{\hat{G}}{H} = \frac{PSU(1,1|2)_L \times PSU(1,1|2)_R}{SO(1,2) \times SO(3)} \sim AdS_3 \times S^3 + 16 \text{ fermions}$$

• Group-product structure $\hat{G} = \hat{F}_L \times \hat{F}_R$ allows for a two-parameter deformation Hoare

$$\begin{split} S_{\eta_L,\eta_R}[g \in \hat{\mathbf{G}}] &\sim T(\gamma^{ij} - \epsilon^{ij}) \int \mathrm{d}^2 \sigma \; \mathrm{STr} \Big[g^{-1} \partial_i g \, P \, \frac{1}{1 - \mathrm{diag}(\eta_L, \eta_R) \mathscr{R}_g P} g^{-1} \partial_j g \, \Big] \\ P &= \frac{2}{\sqrt{(1 - \eta_L^2)(1 - \eta_R^2)}} P^{(2)} + P^{(1)} - P^{(3)} \end{split}$$

block-diagonal matrix realisation $\mathcal{M} = \text{diag}(M_L, M_R) \in \hat{\mathfrak{g}}$ in $\hat{\mathfrak{f}}_L \xleftarrow{} \text{ in } \hat{\mathfrak{f}}_R$ Choice of Drinfel'd Jimbo R-matrix

• There are 2 unimodular R-matrices on $\mathfrak{psu}(1,1|2)$ with the desired action on the bosonic subalgebra

$$R: \begin{pmatrix} 0 & + & + & + \\ - & 0 & - & + \\ - & - & - & 0 \end{pmatrix} \qquad \qquad \bar{R}: \begin{pmatrix} 0 & + & - & + \\ - & 0 & - & - \\ \hline + & + & 0 & + \\ - & - & - & 0 \end{pmatrix}$$

- They were not considered inequivalent in the $AdS_2 \times S^2$ case because they led to backgrounds related by analytic continuation $AdS \leftrightarrow S$
- Can construct two unimodular R-matrices on $psu(1, 1|2)_L \oplus psu(1, 1|2)_R$ $\mathscr{R}_1 = \operatorname{diag}(R, R)$ $\mathscr{R}_2 = \operatorname{diag}(R, \overline{R})$

 \Rightarrow Do they give different supergravity backgrounds?

bi-Yang-Baxter deformation of $AdS_3 \times S^3$: supergravity solutions

• Same metric and (closed) B-field

$$\kappa_{\pm} = \frac{\eta_L \pm \eta_R}{\sqrt{(1 - \eta_L^2)(1 - \eta_R^2)}}$$

• RR sector is different, in particular the dilaton

$$e^{-2\Phi} = e^{-2\Phi_0} \frac{F(\rho)\tilde{F}(r)}{P(\rho,r)^2} \qquad F(\rho) = 1 + \kappa_-^2 (1+\rho^2) - \kappa_+^2 \rho^2$$
$$\tilde{F}(r) = 1 + \kappa_-^2 (1-r^2) + \kappa_+^2 r^2$$

$$\mathcal{R}_1 \qquad P(\rho, r) = 1 - \kappa_+^2 (\rho^2 - r^2 - \rho^2 r^2) + \kappa_-^2 (1 + \rho^2)(1 - r^2) + a 3 \text{-form and a 5-form}$$

$$\mathscr{R}_2$$
 $P(\rho, r) = 1 - \kappa_+^2 \rho^2 r^2 + \kappa_-^2 (1 + \rho^2 r^2)$
+ a 3-form and a 5-form

bi-Yang-Baxter deformation of $AdS_3 \times S^3$: supergravity solutions

• The bosonic background is invariant under the transformations

$$\rho \to i\sqrt{1+\rho^2}$$
, $r \to \sqrt{1-r^2}$, $t \leftrightarrow \psi$, $\varphi \leftrightarrow \phi$, $\kappa_+ \leftrightarrow \kappa_-$.

• Relation between the two supergravity backgrounds

bi-Yang-Baxter deformation of $AdS_3 \times S^3$: supergravity solutions

• Limits of the supergravity backgrounds at the four corners

Same plane-wave limit, but different Pohlmeyer ($\kappa \rightarrow i$) and maximal deformation ($\kappa \rightarrow \infty$) limit

bi-Yang-Baxter deformation of $AdS_3 imes S^3$: conclusions & open problems $^{-24}$

What did this example teach us?

- A given bosonic background can be promoted to a supergravity background in different ways
- The two integrable supergravity backgrounds are related by an imaginary field redefinition and swapping of the deformation parameter
- One point gives the good Pohlmeyer limit, while another point gives the good mirror limit

bi-Yang-Baxter deformation of $AdS_3 imes S^3$: distinguished Dynkin diagram 25

Choice of Drinfel'd Jimbo R-matrix

• 2 R-matrices associated to the distinguished Dynkin diagram on $\mathfrak{psu}(1,1|2)$ with the desired action on the bosonic subalgebra

$$R_0: \begin{pmatrix} 0 \oplus + + + \\ - & 0 \oplus + \\ - & - & 0 \\ - & - & - & 0 \end{pmatrix} \qquad \bar{R}_0: \begin{pmatrix} 0 \oplus - - \\ - & 0 - - \\ + & + & 0 \oplus \\ + & + & - & 0 \end{pmatrix}$$

• They were not considered inequivalent in the $AdS_2 \times S^2$ case because they led to backgrounds related by analytic continuation $AdS \leftrightarrow S$

• Can construct two R-matrices on $\mathfrak{psu}(1,1|2)_L \oplus \mathfrak{psu}(1,1|2)_R$ $\mathscr{R}_1 = \operatorname{diag}(R_0,R_0)$ $\mathscr{R}_2 = \operatorname{diag}(R_0,\bar{R}_0)$

 \Rightarrow Do they give different generalised supergravity backgrounds?

bi-Yang-Baxter deformation of $AdS_3 \times S^3$: distinguished Dynkin diagram 20

Conclusions and open problems

 Drinfel'd Jimbo R-matrices associated to inequivalent Dynkin diagrams can lead to different backgrounds

• R-matrices associated to the fully fermionic Dynkin diagram are unimodular and give rise to a supergravity background, checked for $AdS_2 \times S^2 \times T^6$ and $AdS_5 \times S^5$

Open problems

• Is it possible to get a background that has good Pohlmeyer and mirror limit?

• Understand where the other solutions $a \in [0, 1)$ come from, within or outside the realm of Drinfel'd Jimbo solutions.

Resolve issues with the S-matrix

• Drinfel'd Jimbo R-matrices associated to inequivalent Dynkin diagrams can lead to different backgrounds

• R-matrices associated to the fully fermionic Dynkin diagram are unimodular and give rise to a supergravity background, checked for $AdS_2 \times S^2 \times T^6$ and $AdS_5 \times S^5$

Open problems

Is it possible to get a background that has good Pohlmeyer and mirror limit?

• Understand where the other solutions $a \in [0, 1)$ come from, within or outside the realm of Drinfel'd Jimbo solutions. Thank You !

╺ᢗ≻ Resolve issues with the S-matrix