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Motivation

....a catalyst for theoretical progress in diverse areas: statistical physics; QFT
theory; condensed matter and of course String Theory.

» Target space T-duality — intrinsically stringy = new geometric ideas e.g.
generalised geometry or DFT

» More generally U-dualities = M-+theory?
» Gauge-gravity dualities or holography!

What other dualities?

What are their uses?



Motivation

A hierarchy of T-dualities

Bianchi-Conservation democracy 2

1. Abelian isometries = Abelian T-duality
K=0y, K,Kl=0, dxJ=0
2. Non-Abelian isometries = Non-Abelian T-duality auevedo,pe La 0ssa
Ko= kit [KaoKy] = ucKe,  dxdo=0
3. Non-Abelian Non-isometries = Poisson-Lie T-duality «imicksevera

Ko=kid,  [KaK] = fp°Ke,  dxdo=F¥y A



Motivation

Reasons to be skeptical ...apologia
» Quantum g; and o’ status unclear ... Holography; Talk of Tseytlin
» Baroque or ugly geometries ... wrong variables; Talk of Hassler

Reasons to care
Non-Abelian T-duality holographic backgrounds for exotic quiver QFTs

v

v

n- and \- integrable deformations of AdS; superstring

v

Close connection to gauged supergravity
A manifold structure for DFT

v
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Non-linear sigma model and principal chiral model

Strings in curved target space M, E; = Gjj + Bj;:

5= [ 0G0 + Bi()0-X
Suppose an isometry group G of vector field Ky then Noether currents
Jia =K' (Gji £ By) 0+ X
Useful example M = G, a group manifold, and the PCM

S= /<9’10+979’1079> :/Liﬂablll, g=9X): £ =G

Left-invariant oneforms L = g~'dg



Recap: the Principal Chiral Model

» Classically (@and Quantum) Integrable: Lax formulation of e.q.m.

z
1— 22

L(z) = g 'dg+ xg 'dg, dC—LAL=0,

1-—22
z € C an auxiliary parameter;
» oo of conserved charges encoded in zexpansion of monodromy

T(z) = Pexp/ dol,, 0:;7(z)=0



Non-Abelian T-dual: The Buscher Procedure

Gauging procedure to obtain the non-Abelian T-dual geometry

1. Gauge G, in PCM 8g — Dg = dg — Ag
2. Double the degrees of freedom with Lagrange multipliers

L =vF,_ F, =[D: D]

3. Gauge Fix g = 1 and integrate by parts
4. Integrate out non-propagating gauge fields to get new sigma model

1 . a c o\
ST dual = - /0+V (K28ap + Fap®ve) 10V

Classical equivalence (canonical transformation) to PCM



Non-Abelian T-dual: Example of S?

Lag. multipliers in spherical coordinates

(vi,va,vs) = (r,0,9)
Extract T-dual geometry

— 2
ds? = %’; + r2'2 ff# (db? + sin? 6dg?)

~ $
B= msmeda/\dqﬁ

:I; :(z)o 7%|Og(f2 +I€4)

Extends to RR sector and type Il supergravity



A-deformations: The Sfetsos Procedure

Rather similar to the Buscher procedure this recipe produces integrable A
deformations isretsos 13121 as a regularisation of non-Abelian T-duality

1. Double the d.o.f.: x%Spcm[g] + kSwzwlg]
2. Gauge G; in PCM and G in WZW
3. GaugeFixg=1
4. Integrate out non-propagating gauge fields
kX , .
S)\ = I(Swzw+ % / Tr(g 10+gogaigg 1)

k

Og:(landg)il A:m

Integrable model for all values of \!



Interpolation between CFT and non-Abelian T-duals

Nice behaviour in limits of small and large deformations:
» X — 0: current bilinear perturbation

k o
Sxlaso & kSwzw + ;/)\ﬂlf +O(\?)
» X\ — 1: non-Abelian T-dual of PCM
Salrot & %/mx"((sab +EX) Tt X+ ok

In this limit the gauged WZW in the Sfetsos Procedure becomes a Lagrange
multiplier term of the Buscher Procedure



A Commentary

A deformations solve SUGRA with appropriate RR fields isretsos o, sorsato wuirn

v

v

Quantum group symmetry expected with g = e watowood etan

v

Can be quantised on a light cone lattice as spin-k Heisenberg XXX

Spi n-cho in [Hollowood,Price,Appadu (+DT)]

v

Also applied to cosets isretsost, supercosets wotiowood et an
One-loop marginal deformation in case of PSU(2, 2|4)! wppadu, Holtowoodn

v



n, A and Poisson-Lie

n and \ connected by generalised Poisson Lie T-duality

[Vicedo 1504; Hoare & Tseytlin 1504; Siampos Sfetsos DT 1506; Klimcik 15081

» PL dualise n model + Analytic continue certain Euler angles and
deformation parameters

TN k1— N

» Acting on the parameter g we have

Exciting question: quantum corrections¢ exact map?
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Hacking the A model

A few different possibilities to find new X type theories

» Change the PCM

> Zs graded coset=> A — G/H
> Other integrable model = multi-parameter deformations

» Change the WZW e.g. multiple factors
» Change the Gy gauging



Multi-parameter \-Model

» Sfetsos Procedure can be generalised by replacing PCM:

Sigl = [ Tr(g0.g05 "0-9)

» )\ now a matrix A:
Sy =kS + —k / Tr( 19 71 0 *1)
A (ZA g +gA*' adg -99

A=1+k'®
» Idea: if © defined integrable PCM, A can define an integrable theory



n — A Model

Start with n PCM
0=(1-7R)""
Rational Lax
Lo = (c+(2) + dDR)T: + (e (2) + d@R)T-
Second RG invariant

2
k(1 —))

) =

Quantum Group Symmetries

qL _ eE , qR _ eiﬂ'/k

PL map to “bi-Yang-Baxter”



Asymmetric Gauging

Gauging in a WZW is constrained by ‘anomaly’ constraints (classical)

(18, 7119 = (160, T, TE0)
<T(L) T(U) <T(R) T(R)>
Some possibilities
» U(1)q and U(1),
» G ‘null’
> Gdiag

» TO = WT® for some metric-preserving outer automorphism W

Using an automorphism allows a non-diagonal embedding of non-Abelian
(sub)group



Asymmetric \-model on symmetric space

Generalised construction includes A deformation to axial gauged models

Start with a PCM on a G/H, append with Syzwlgl, and we gauge the
following G action:

990 gWlg) §—90'9
Use minimal coupling in PCM and asymmetric gauged WZW

k _ _
SgWZW(g7 Ai: W) = sWZW(g) + ; /<A—76+gg 1> - <W(A+)7g 18_g>

(AL GWIA)G!) — SIA- AL) — L(WIA), W(AL).



Asymmetric \-model on symmetric space

Completing the derivation we arrive at

k _ - -
53(9: W) = Swzw(9) + ;/<6+99 L (1 —adgWPy) "' 0-gg™"),
e =" det (adyW — Q)
LEY
)\g
Residual gauge symmetry (fixed = target space )

g— hgW(h)y heH

Pr(e) =9 ®

Resulting theory still integrable; unclear what A — 1 vs. NABT or the PL map



SL(2,R)/U(1): Of Cigars and Trumpets (undeformed)

1 1 0 1 /0 1 1 0
=0 B)r m=s ) e s (G

SL(2,R) Group element
g=evs B eV g s
Axial gauging g — hgh gives cigar geometry (k >> 1):
dsi = k(dp” +tanh® pd6®), e **A = e >* cosh” p,
Vector gauging g — h™'gh t gives trumpet geometry (k >> 1):

dsy = k (dp” + coth® pdr?), e **A = e *®sinh? p,

Related by T-duality (+ Z, action) or complex field redefinition



SL(2,R)/U(1): Of X Cigars and Trumpets

Automorphism choice:
1 0 O 1 0 0
W=10 1 0| = \—trumpet W=[0 -1 0 | = \-cigar
0 0 1 0o 0 -1

Like compact case parafermionic deformation giving A-cigar geometry:

A A ,
dsi, =k (1 Y (dp* + tanh? pd6?*) + — 2 (cosfdp — sinftanh pd9)2) ,
ko (A (d¢2+d¢?) + (1+A2)d<d§) o o
=1 T ;. (¢=sinh(p)e”)

Relation to Atrumpet? PL- relations?
k= corrections 2 S-matrix2 Spin-chain quantisation?



Some fun cigar speculation

|II

FZZ rateev, zamotodchikov, zamolodchikov duality maps cigar CFT to “Sine-Liouville mode
In turn to matrix model dual kazakov, kostoy, Kutasov

Z / o / [dAJe™ /| THOAA VA
A(2mR)=QA(0)Q 1

Hidden integrability in this system (differential equation constrain free energy)!

We can match our A-deformation to SL at large ¢, and argue that is exact
since parafermions commute with potential. What about the Matrix model dual
- is there an integrable deformation?
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Integrable Boundaries

Boundaries break symmetries but b.c. that preserve integrability?

Technique: Conserved boundary Monodromy cherednik 84, siyanin 88

Transport the Lax from 0 — =, and reflect 7 — 0
(2) = 1%(0, 7, ~2)T(.0,2)
™ 0
= Pexp/ QLo (—2) - Pexp/ Lo(2)
0 T

Q) € aut g automorphism encodes reflection at boundary.
Conserved charges Q" = Tr(T?(2))" if

8. T(2) = [T°(2), N(2)]



D-branes in the A\-model on coset

Return to symmetric space A-model on group manifold

» Using explicit form of Lax we find integrable boundary conditions:
Og-1[g ' 0-gllox = —Q - Og[019g '|ow
» Interpret these as a mix of Dirichlet and Neumann b.c.
X =0, GudoXN = 5 0. XN = (B, + 2ma’Fop) 0, XN

with gauge flux F = dA on the brane.
» D-branes are twisted conjugacy classes — matching beautiful results in CFT

Alekseev Schomerus, Felder et al., Stanciu, Stanciu Figueroa-O'Farrill

Cu(g) = {hgwh™he G}, w(e¥)~ ™.



D-branes in the SU(2) A-model

DBI action

v

SDB/:/G_(I)\/ é-l—]:

X enters spectrum of D-branes. E.g. SU(2), ¢ a scalar fluctuation and g a
gauge flucuation

s\ 114 (2480 2 5
d?\g /) kl-» 20 2 9/’

14+22

v

Note 6§ not a moduli, D-branes are stabilised

v

v

Flux quantisation = D-branes stabilised to conjugacy classes of integrable
hlghesf welghts Bachas, Petropolous; Stanciu Figueroa-O'Farrill

v

e.g. SU(2)i: 2 DO’s and k — 1 D2's wrapping S* whose size is a function
of A



D-branes and SU(2) A\-model limits

Interesting to track the D-branes in the NABT limit and PL+analytic map
» Non-Abelian Tdual limit A — 1 scaling limit

g=1+ ’,v"ch, + O(k™?)

The D2 brane boundary conditions become

M 'ov=-MTo_v M= (0 — Fpve)
Immediately recognise the (reverse) T-dual of these

g '9.g=g '9_g= D3 branes in PCM



D-branes and SU(2) A\-model limits

» Analytic Continuation + PL limit Sketch: write b.c.’s in terms of P, Q and
use of canonical transformation to relate to p, g of p-model. Rewrite in
terms auto-morphism gluing of right invariant forms:

1

Ri:RiRk — 71_ _
L =R R=070. Ou=

D3 brane with world volume flux in »-PCM



Asymmetric A-model and D-branes

Powerful technique exposes subtle branes in non-rational CFT

1+ 22 dedé A dg? 4 de?

2 _
e O FN T g s 2

Find integrable D-branes:
» D1 hairpins 8- (£ — &) =0and 9,(£ — &) =0

» DO living at the tip 8,6 =0, =0, ¢ =£6=0
» D2 with world volume gauge field

Exploit for superstring wi ; Schmidtt2
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Conclusions and Open Questions

» Rich interplay between integrable models and generalised notions of
duality
» Starting to flesh out a surprisingly wide landscape of integrable theories

» Elegant interplay of open-systems and integrability can be used to probe
aspects of Duality

N
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Open Questions

» Can we expand the integrable landscape using a duality web e.g. FZZ,
Matrix model, level-rank, bosonisation

» Exhaust the full landscape of integrable NLSM2 What is the overarching
structure

» Continue progress in quantisation

» Integrable models to verify all orders validity of PL in o/, gs2
» More crunch about how to exploit this holography

» Mtheoretic implications?



Special thanks to Riccardo, Yolanda, Falk and
Luis for a terrific meeting
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e Generalised A models, symmetries, S-matrix and quantisation
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Generalised )\ & YB-)\ Theories

» Sfetsos Procedure can be generalised by replacing PCM:
kSwzwlg) + Slg] = / Tr(g '0+90g§ '0-9)
> ) now a matrix A:
Sx = kSwzw + kS / Tf(9718+9;(379971)
27 | A-1+ Adg

A=1+k'®
» Idea: if © defined integrable PCM, A can define an integrable theory



Generalised \ & YB-)\ Theories for SU(2)

A-XXZ Model A-YB Model

o = diag(c .67, A7) 0 =l+5(1-R)"

Trigonometric Lax

Rational Lax
Lo=Ht[4°TiT — £ [4°T°T Lo = (ct + dR)T4 + (c- + dR)JT-
RG invariant RG invariant
i KR 1-eH(1-N? __2m)
’YQ:Z 22— g2 2 k(1 —))
“Non ultra-local” i.e. central term in current algebra
a b ¢ 4c k ab ¢/
{ji(x)7k7i(y)} = Tab ji(x)éxy:t %5 (5)(),



Classical Symmetries

» Expand monodromy to find symmetries but need to determine expansion

points!
T(z) = Pexp (- / Eo(z))

» Determine Maillet r/s algebra
{E%, L%} = [I'(Zl, Zz), [:% —+ [:%](512 + [S(Zl, 22), [,% — [:%]512 — 25(21, 22)512

» Locate special points z, where lim._,o r(z., z. + €) = finite



Charges and Symmetries

v

Special points associated to Quantum Group Symmetries
e.g. For A\ — YB model at ¢(z,) = i d(z.) we find

v

+x
Q ~ / T, @~ / (Jo £iJ3) exp [—iz Jo3<iy>dy]

[e']

g=exp (%) =e”~ Homogenous Gradation

v

For A — XXZ model similar with g = exp[r+/+2] Principal Gradation
QG parameters are RG invariant

v

v

Second quantum group point given by KM currents with

, i
9 = €XP (?)



Exact S-Matrix

Based on symmetries, limits and RG behaviour, we find conjectured form for
S-matrices using known blocks

> A-XXZ Model in UV Safe Domain 7'? < 0 semard Leciair
Sv-xz = Ssc(0,7') ® Sl(el;)os(e)
» A-XXZ Model Other Domain (periodic in rapidity)
Sz = Sp(0, %) @ Spos(6)
» )\-YB Model (periodic in rapidity, parity broken)

Sa—xxz = Sh(0,%) ® SRSOS( )



'Proving' S-matrix |

v

Non-ultra-local i.e.d” makes conventional techniques (QISM) inapplicable

» Alleviation raddeev-resneticnin takes a limit, modifies UV but same IR properties
k.
k—0, = ,~ fixed
E7A

v

In this limit the Lax connection becomes ultra-local (s(z, w) — 0) and can
be regularised, and quantised, on a lattice

» Obtain a lattice theory, XXZ anisotropic spin chain.
N
H% = Z (U,l,O',%_,_l + 0,2,0,%4_1 + COS’yagai’H)
n=1
» Actually need a spin S = £ chain and identify
y=21 —k

,y/



'Proving' S-matrix Il

v

Ground state using TBA «iitov-Reshetiknin find Dirac Sea dominated by k-Bethe
strings whose density p(z) obeys integral equation

(@) + pn(2) + - [ K(z= y)oly)dy = (2

v

Holes with density p, are excitations above the ground state

v

Amazing fact, these excitations scatter relativistically with a kernel

K(z) = dilzLogS(z) = /Ooo cos(zw) (coth(kw) + coth(v'w)) tanh 7w

v

This corresponds exactly to the S-matrix of the A-XXZ Model



Appendix: S-matrix Technology

Rapidity
E=mcosh®, P= msinh@

Axioms:

1. Factorization 2-body factorisation, no particle production

2. Analyticity. Only poles along the imaginary axis 0 < Imf < 7 associated

to stable bound states.
3. Hermitian analyticity
S{e) = Si(—9) .
4. Unitarity
Zs (0)SE.(0)" = 6imbin, OER.

5. Crossing

SZ’(@) = Ci SZ:,.(I'W — H)C Sr (,ﬂ- —9),

i'i

where C is the charge conjugation matrix.



Appendix: Gradation |

[Hi, Ej] = ajiE;,  [Hi, Fl = —aif;,  [E, F] = 8;H;

Generalised Cartan matrix a; has off diagonal elements equal —2.

K= Ho + Hi is central. K= 0, i.e. centreless representations su(2) becomes
the loop algebra. Reps are the tensor of an su(2) rep and functions of a
variable z. Gradation is the relative action in su(2) space and zspace.

homogenous gradation
E1:T‘+7 F1:T_, E():ZQT_, FO:Z_2T+, H1:—H0:T3
. principal gradation

E1:ZT+, F12271T7, E():ZTi, F02271T+, H1=—H0=T3



Appendix: Homogenous Gradation

T +2 QF 23 Q;
Zo = +in +1 at Qf Qr
0 9t 9= -9 9

2z, = —in -1 ot 03, a-
l -2 ot, 03, 2,

Figure: The charges and their grades for the expansion of the monodromy around the pair of
special points z = +in. The blue/red and positive/negative graded charges are associated to +in,
respectively. The red and blue charges generate the affine quantum group in homogenous gradation
and all the other charges are obtained by repeated Poisson brackets of these charges.



Appendix: Principal Gradation

su(2),.

T +2 23

Zy = OO _|_1 D+ Q,

7o =—00 -1 9t Q-

l -2 0%,

Figure: The charges and their grades for the expansion of the monodromy around the pair of
special points z = o0 (or 0, co with a multiplicative spectral parameter). The blue/red and
positive/negative graded charges are associated to +oo, respectively. The red and blue charges
generate the affine quantum group in principal gradation and all the other charges are obtained by
repeated Poisson brackets of these charges.




RG in YB-\ model
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RG in -\ model
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Figure: The RG flow (to the IR) of the XXZ lambda model. The WZW fixed point is identified by the
blue blob. The blue line is a line of UV fixed points. The green curve is a UV safe trajectory that has
~" € R. The red curve is a cyclic RG trajectory with v/ = io, o € R. The trajectory has a jump in
the coupling A from —co to oo, but is continuous in 1/X.
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