Facets of λ -deformations

Integrability Duality and Beyond (Santiago de Compostella)

Daniel C. Thompson
Driezen, Sevrin, DT [1806.10712,1902.04142]

29th May 2019

Motivation

Dualities.....

....a catalyst for theoretical progress in diverse areas: statistical physics; QFT theory; condensed matter and of course String Theory.

- Target space T-duality intrinsically stringy ⇒ new geometric ideas e.g. generalised geometry or DFT
- More generally U-dualities ⇒ M-theory?
- Gauge-gravity dualities or holography!

What other dualities?

What are their uses?

Motivation

A hierarchy of T-dualities

Bianchi-Conservation democracy?

1. Abelian isometries ⇒ Abelian T-duality

$$K = \partial_{\theta}$$
, $[K, K] = 0$, $d \star J = 0$

2. Non-Abelian isometries ⇒ Non-Abelian T-duality Quevedo, De La Ossa

$$K_a = k_a^\mu \partial_\mu$$
, $[K_a, K_b] = f_{ab}{}^c K_c$, $d \star J_a = 0$

3. Non-Abelian Non-isometries ⇒ Poisson-Lie T-duality Klimick, Severa

$$K_a = k_a^\mu \partial_\mu , \qquad [K_a, K_b] = f_{ab}{}^c K_c , \qquad d \star J_a = \tilde{f}^{bc}{}_a J_b \wedge J_c$$

Motivation

Reasons to be skeptical ...apologia

- ▶ Quantum g_s and α' status unclear ... Holography; Talk of Tseytlin
- ▶ Baroque or ugly geometries ... wrong variables; Talk of Hassler

Reasons to care

- Non-Abelian T-duality holographic backgrounds for exotic quiver QFTs
- η and λ integrable deformations of AdS_5 superstring
- Close connection to gauged supergravity
- A manifold structure for DFT

Contents

- 1. Motivation and Introduction
- **2.** Non-abelian T-duality and the λ -deformation
- 3. Variations on a theme
- **4.** D-branes in the λ -model

Contents

- 1. Motivation and Introduction
- 2. Non-abelian T-duality and the λ -deformation
- 3. Variations on a theme
- **4.** D-branes in λ models

Non-linear sigma model and principal chiral model

Strings in curved target space \mathcal{M} , $E_{ij} = G_{ij} + B_{ij}$:

$$S = \int \partial_{+} X^{i} (G_{ij}(X) + B_{ij}(X)) \partial_{-} X^{j}$$

Suppose an isometry group G of vector field K_{α} then Noether currents

$$J_{\pm a} = K_a{}^i \left(G_{ij} \pm B_{ij} \right) \partial_{\pm} X^j$$

Useful example $\mathcal{M} = G$, a group manifold, and the PCM

$$S = \int \langle g^{-1} \partial_{+} g, g^{-1} \partial_{-} g \rangle = \int L^{a}_{+} \kappa_{ab} L^{b}_{-} , \quad g = g(X) : \Sigma \to G$$

Left-invariant one-forms $L = g^{-1}dg$

Recap: the Principal Chiral Model

► Classically (and Quantum) Integrable: Lax formulation of e.q.m.

$$\mathcal{L}(\textbf{z}) = \frac{1}{1-\textbf{z}^2} \textbf{g}^{-1} \textbf{d} \textbf{g} + \frac{\textbf{z}}{1-\textbf{z}^2} \star \textbf{g}^{-1} \textbf{d} \textbf{g} \;, \quad \textbf{d} \mathcal{L} - \mathcal{L} \wedge \mathcal{L} = 0 \;, \label{eq:local_$$

 $z \in \mathbb{C}$ an auxiliary parameter;

▶ ∞ of conserved charges encoded in z-expansion of monodromy

$$T(z) = \mathsf{Pexp} \int \mathsf{d}\sigma \mathcal{L}_\sigma \; , \quad \partial_ au T(z) = 0$$

Non-Abelian T-dual: The Buscher Procedure

Gauging procedure to obtain the non-Abelian T-dual geometry

- **1.** Gauge G_l in PCM $\partial g \rightarrow Dg = \partial g Ag$
- 2. Double the degrees of freedom with Lagrange multipliers

$$L_v = v_{\alpha} F_{+-}^{\alpha}$$
 $F_{+-} = [D_+, D_-]$

- **3.** Gauge Fix g = 1 and integrate by parts
- 4. Integrate out non-propagating gauge fields to get new sigma model

$$S_{T-dual} = \frac{1}{\pi} \int \partial_{+} \mathbf{v}^{a} (\kappa^{2} \delta_{ab} + F_{ab}{}^{c} \mathbf{v}_{c})^{-1} \partial_{-} \mathbf{v}^{b}$$

Classical equivalence (canonical transformation) to PCM

Non-Abelian T-dual: Example of S^3

Lag. multipliers in spherical coordinates

$$(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3)\mapsto (\mathbf{r},\theta,\phi)$$

Extract T-dual geometry

$$\begin{split} \widehat{ds^2} &= \frac{dr^2}{\kappa^2} + \frac{r^2\kappa^2}{r^2 + \kappa^4} \left(d\theta^2 + \sin^2\theta d\phi^2 \right) \\ \widehat{B} &= \frac{r^3}{r^2 + \kappa^4} \sin\theta d\theta \wedge d\phi \\ \widehat{\Phi} &= \phi_0 - \frac{1}{2} \log(r^2 + \kappa^4) \end{split}$$

Extends to RR sector and type II supergravity

λ -deformations: The Sfetsos Procedure

Rather similar to the Buscher procedure this recipe produces integrable λ deformations $_{\text{LSfetsos }13121}$ as a regularisation of non-Abelian T-duality

- **1. Double** the d.o.f.: $\kappa^2 S_{PCM}[\tilde{g}] + k S_{WZW}[g]$
- **2. Gauge** G_L in PCM and G_{diag} in WZW
- 3. Gauge Fix $\tilde{g}=1$
- 4. Integrate out non-propagating gauge fields

$$\begin{aligned} \mathbf{S}_{\lambda} &= k \mathbf{S}_{\mathsf{WZW}} + \frac{k \lambda}{2\pi} \int \mathit{Tr}(g^{-1} \partial_{+} g \mathcal{O}_{g} \partial_{-} g g^{-1}) \\ \mathcal{O}_{g} &= (1 - \lambda \mathsf{ad}_{g})^{-1} \qquad \lambda = \frac{k}{\kappa^{2} + k} \end{aligned}$$

Integrable model for all values of λ !

Interpolation between CFT and non-Abelian T-duals

Nice behaviour in limits of small and large deformations:

 $\lambda \to 0$: current bilinear perturbation

$$|S_{\lambda}|_{\lambda \to 0} \approx kS_{WZW} + \frac{k}{\pi} \int \lambda J_{+}^{\alpha} J_{-}^{\alpha} + \mathcal{O}(\lambda^{2})$$

 $\lambda \to 1$: non-Abelian T-dual of PCM

$$|S_{\lambda}|_{\lambda \to 1} pprox rac{1}{\pi} \int \partial_{+} X^{a} (\delta_{ab} + f_{ab}{}^{c} X_{c})^{-1} \partial_{-} X^{b} + \mathcal{O}(k^{-1})$$

In this limit the gauged WZW in the Sfetsos Procedure becomes a Lagrange multiplier term of the Buscher Procedure

λ Commentary

- $ightharpoonup \lambda$ deformations solve SUGRA with appropriate RR fields (Sfetsos DT, Borsato Wulff)
- lackbox Quantum group symmetry expected with $q=\mathrm{e}^{rac{i\pi}{k}}$ [Hollowood et all
- Can be quantised on a light cone lattice as spin-k Heisenberg XXX spin-chain [Hollowood,Price,Appadu (HDT)]
- ► Also applied to cosets [Sfetsos], supercosets [Hollowood et all
- ightharpoonup One-loop marginal deformation in case of PSU(2,2|4)! [Appadu, Hollowoodl]

η , λ and Poisson-Lie

η and λ connected by generalised Poisson Lie T-duality

[Vicedo 1504: Hoare & Tsevtlin 1504: Siampos Sfetsos DT 1506: Klimcik 1508]

ightharpoonup PL dualise η model + Analytic continue certain Euler angles and deformation parameters

$$\eta \to i \frac{1-\lambda}{1+\lambda} \; , \quad t \to \frac{\pi(1+\lambda)}{k(1-\lambda)}$$

Acting on the parameter q we have

$$q = e^{\eta t} \leftrightarrow q = e^{\frac{i\pi}{k}}$$

Exciting question: quantum corrections? exact map?

Contents

- 1. Motivation and Introduction
- **2.** Non-abelian T-duality and the λ -deformation
- 3. Variations on a theme
- **4.** D-branes in the λ Models

Hacking the λ model

A few different possibilities to find new λ type theories

- Change the PCM
 - ▶ \mathbb{Z}_2 graded coset $\Rightarrow \lambda G/H$
 - ightharpoonup Other integrable model \Rightarrow multi-parameter deformations
- Change the WZW e.g. multiple factors
- Change the G_{diag} gauging

Multi-parameter λ -Model

Sfetsos Procedure can be generalised by replacing PCM:

$$S[\tilde{g}] = \int Tr(\tilde{g}^{-1}\partial_{+}g\Theta\tilde{g}^{-1}\partial_{-}g)$$

 $\triangleright \lambda$ now a matrix Λ :

$$S_{\lambda} = kS_{WZW} + \frac{k}{2\pi} \int Tr(g^{-1}\partial_{+}g\frac{1}{\Lambda^{-1} + ad_{g}}\partial_{-}gg^{-1})$$

$$\Lambda = 1 + k^{-1}\Theta$$

▶ Idea: if Θ defined integrable PCM, Λ can define an integrable theory

Start with η PCM

$$\Theta = \left(1 - \eta \mathcal{R}\right)^{-1}$$

Rational Lax

$$\mathcal{L}_{\sigma} = (c_+(z) + d(z)\mathcal{R})\mathcal{J}_+ + (c_-(z) + d(z)\mathcal{R})\mathcal{J}_-$$

Second RG invariant

$$\Sigma = \frac{2\pi\eta\lambda}{k(1-\lambda)}$$

Quantum Group Symmetries

$$q_L = \mathbf{e}^{\Sigma} , \quad q_R = \mathbf{e}^{i\pi/k}$$

PL map to "bi-Yang-Baxter"

Asymmetric Gauging

Gauging in a WZW is constrained by 'anomaly' constraints (classical)

$$\begin{split} \langle [\mathcal{T}_{\sigma}^{(l)}, \mathcal{T}_{b}^{(l)}], \mathcal{T}_{c}^{(l)} \rangle &= \langle [\mathcal{T}_{\sigma}^{(R)}, \mathcal{T}_{b}^{(R)}], \mathcal{T}_{c}^{(R)} \rangle \\ \langle \mathcal{T}_{\sigma}^{(l)}, \mathcal{T}_{b}^{(l)} \rangle &= \langle \mathcal{T}_{\sigma}^{(R)}, \mathcal{T}_{b}^{(R)} \rangle \end{split}$$

Some possibilities

- $V(1)_a$ and $U(1)_v$
- G_L 'null'
- ► G_{diag}
- ullet $\mathcal{T}^{(l)} = \mathcal{W}\mathcal{T}^{(R)}$ for some metric-preserving outer automorphism \mathcal{W}

Using an automorphism allows a non-diagonal embedding of non-Abelian (sub)group

Asymmetric λ -model on symmetric space

Generalised construction includes λ deformation to axial gauged models

Start with a PCM on a G/H, append with $S_{WZW}[g]$, and we gauge the following G action:

$$g \to g_0^{-1} gW(g_0) \quad \tilde{g} \to g_0^{-1} \tilde{g}$$

Use minimal coupling in PCM and asymmetric gauged WZW

$$\begin{split} S_{\text{gWZW}}(g, A_{\pm}^{\text{A}}, W) &= S_{\text{WZW}}(g) + \frac{k}{\pi} \int \langle A_{-}, \partial_{+} g g^{-1} \rangle - \langle W(A_{+}), g^{-1} \partial_{-} g \rangle \\ &+ \langle A_{-}, g W(A_{+}) g^{-1} \rangle - \frac{1}{2} \langle A_{-}, A_{+} \rangle - \frac{1}{2} \langle W(A_{-}), W(A_{+}) \rangle. \end{split}$$

Asymmetric λ -model on symmetric space

Completing the derivation we arrive at

$$\begin{split} S_{\lambda}(g,W) &= S_{\mathsf{WZW},k}(g) + \frac{k}{\pi} \int \langle \partial_{+} g g^{-1}, (\mathbf{1} - \mathsf{ad}_{g} W P_{\lambda})^{-1} \, \partial_{-} g g^{-1} \rangle, \\ \mathsf{e}^{-2\Phi} &= \mathsf{e}^{-2\Phi_{0}} \, \det \big(a d_{g} W - \Omega \big) \\ P_{\lambda}(\mathfrak{g}) &= \mathfrak{g}^{(0)} \oplus \frac{1}{\lambda} \mathfrak{g}^{(1)} \end{split}$$

Residual gauge symmetry (fixed \Rightarrow target space)

$$g \rightarrow hgW(h)$$
 $h \in H$

Resulting theory still integrable; unclear what $\lambda \to 1$ vs. NABT or the PL map

SL(2,R)/U(1): Of Cigars and Trumpets (undeformed)

$$T_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad T_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ 1 & 0; \end{pmatrix}, \quad \mathfrak{h} = T_3 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix},$$

SL(2, R) Group element

$$g = e^{\frac{\tau - \theta}{\sqrt{2}} \, \mathsf{T}_3} \, e^{\sqrt{2} \, \rho \, \mathsf{T}_1} \, e^{\frac{\tau + \theta}{\sqrt{2}} \, \mathsf{T}_3}$$

Axial gauging $g \rightarrow hgh$ gives cigar geometry (k >> 1):

$$\mathrm{d} \mathbf{s}_\mathrm{A}^2 = k \left(\mathrm{d} \rho^2 + \mathrm{tanh}^2 \, \rho \, \mathrm{d} \theta^2 \right), \quad \mathrm{e}^{-2\Phi_\mathrm{A}} = \mathrm{e}^{-2\Phi_0} \, \mathrm{cosh}^2 \, \rho,$$

Vector gauging $g \to h^{-1}gh$ t gives **trumpet** geometry (k >> 1):

$$\mathrm{d} \mathfrak{s}_{\mathrm{V}}^2 = k \left(\mathrm{d}
ho^2 + \coth^2
ho \, \mathrm{d} au^2
ight), \quad \mathrm{e}^{-2\Phi_{\mathrm{A}}} = \mathrm{e}^{-2\Phi_0} \sinh^2
ho,$$

Related by T-duality (+ \mathbb{Z}_k action) or complex field redefinition

SL(2,R)/U(1): Of λ Cigars and Trumpets

Automorphism choice:

$$W = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow \lambda - \text{trumpet} \qquad W = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \Rightarrow \lambda - \text{cigar}$$

Like compact case parafermionic deformation giving λ -cigar geometry:

$$\begin{split} \mathrm{d} \mathbf{s}_{\mathrm{A},\lambda}^2 &= k \left(\frac{1-\lambda}{1+\lambda} \left(\mathrm{d} \rho^2 + \tanh^2 \rho \mathrm{d} \theta^2 \right) + \frac{4\lambda}{1-\lambda^2} \left(\cos \theta \mathrm{d} \rho - \sin \theta \tanh \rho \mathrm{d} \theta \right)^2 \right), \\ &= \frac{k}{1-\lambda^2} \frac{\left(\lambda \left(\mathrm{d} \zeta^2 + \mathrm{d} \bar{\zeta}^2 \right) + (1+\lambda^2) \mathrm{d} \zeta \mathrm{d} \bar{\zeta} \right)}{1+|\zeta|^2}, \qquad (\zeta = \sinh(\rho) \mathrm{e}^{\mathrm{i} \theta}) \end{split}$$

Relation to λ -trumpet? PL- η relations? k^{-1} corrections ? S-matrix? Spin-chain quantisation?

Some fun cigar speculation

FZZ Fateev, Zamolodchikov, Zamolodchikov duality maps cigar CFT to "Sine-Liouville model" In turn to matrix model dual Kazakov, Kostov, Kutasov

$$\mathcal{Z} \sim \int d\Omega \int_{A(2\pi R) = \Omega A(0)\Omega^{-1}} [dA] e^{-\int \text{Tr}(\partial_x A \partial_x A) + V(A)}$$

Hidden integrability in this system (differential equation constrain free energy)!

We can match our λ -deformation to SL at large φ , and argue that is exact since parafermions commute with potential. What about the Matrix model dual - is there an integrable deformation?

Contents

- 1. Motivation and Introduction
- **2.** Non-abelian T-duality and the λ -deformation
- 3. Variations on a theme
- 4. D-branes in the λ Models

Integrable Boundaries

Boundaries break symmetries but b.c. that preserve integrability?

Technique: Conserved boundary Monodromy Cherednik 84, Sklyanin 88

Transport the Lax from $0 \to \pi$, and reflect $\pi \to 0$

$$egin{aligned} & \mathcal{T}^{b}(z) = \mathcal{T}^{\Omega}(0,\pi,-z)\mathcal{T}(\pi,0,z) \ &= \mathsf{Pexp} \int_{0}^{\pi} \Omega(\mathcal{L}_{\sigma}(-z)) \cdot \mathsf{Pexp} \int_{\pi}^{0} \mathcal{L}_{\sigma}(z) \end{aligned}$$

 $\Omega \in \mathit{aut}\,\mathfrak{g}$ automorphism encodes reflection at boundary.

Conserved charges
$$Q^{(n)} = Tr(T^b(z))^n$$
 if

$$\partial_\tau \textbf{T}^b(\textbf{z}) = [\textbf{T}^b(\textbf{z}), \textbf{N}(\textbf{z})]$$

D-branes in the λ -model on coset

Return to symmetric space λ -model on group manifold

Using explicit form of Lax we find integrable boundary conditions:

$$\mathcal{O}_{g^{-1}}[g^{-1}\partial_{-}g]|_{\partial\Sigma} = -\Omega\cdot\mathcal{O}_{g}[\partial_{+}gg^{-1}]|_{\partial\Sigma}$$

Interpret these as a mix of Dirichlet and Neumann b.c.

$$\partial_{\tau} \textbf{X}^{\text{D}} = 0 \; , \quad \widehat{\textbf{G}}_{\text{ab}} \partial_{\sigma} \textbf{X}^{\text{bN}} = \mathcal{F}_{\text{ab}} \partial_{\tau} \textbf{X}^{\text{bN}} = (\widehat{\textbf{B}}_{\text{ab}} + 2\pi\alpha' \textbf{F}_{\text{ab}}) \partial_{\tau} \textbf{X}^{\text{bN}}$$

with gauge flux F = dA on the brane.

D-branes are twisted conjugacy classes – matching beautiful results in CFT
 Alekseev Schomerus, Felder et al., Stanciu, Stanciu Figueroa-O'Farrill

$$C_{\omega}(g) = \{hg\omega(h^{-1})|h \in G\}\ , \quad \omega(e^{tX}) \sim e^{t\Omega X}\ .$$

D-branes in the SU(2) λ **-model**

DBI action

$$\mathcal{S}_{ extit{DBI}} = \int \mathsf{e}^{-\Phi} \sqrt{\widehat{G} + \mathcal{F}}$$

 \blacktriangleright λ enters spectrum of D-branes. E.g. $SU(2), \, \delta$ a scalar fluctuation and g a gauge flucuation

$$\frac{d^2}{d\ell^2} \left(\begin{array}{c} \delta \\ g \end{array} \right) = -\frac{1}{k} \frac{1+\lambda^2}{1-\lambda^2} \left(\begin{array}{cc} 2 + \frac{(1+\lambda)^2}{1+\lambda^2} \square & 2 \\ 2 \square & \frac{(1+\lambda)^2}{1+\lambda^2} \square \end{array} \right) \left(\begin{array}{c} \delta \\ g \end{array} \right) \; ,$$

- \blacktriangleright Note δ not a moduli, D-branes are stabilised
- ► Flux quantisation ⇒ D-branes stabilised to conjugacy classes of integrable highest weights Bachas, Petropolous; Stanciu Figueroa-O'Farrill
- ▶ e.g. $SU(2)_k$: 2 D0's and k-1 D2's wrapping S^2 whose size is a function of λ

D-branes and SU(2) λ -model limits

Interesting to track the D-branes in the NABT limit and PL+analytic map

Non-Abelian T-dual limit $\lambda \to 1$ scaling limit

$$g = 1 + i\frac{v^a T_a}{k} + O(k^{-2})$$

The D2 brane boundary conditions become

$$M^{-1}\partial_{+}\mathbf{v} = -M^{-7}\partial_{-}\mathbf{v}$$
 $M = (\delta_{ab} - f_{ab}{}^{c}\mathbf{v}_{c})$

Immediately recognise the (reverse) T-dual of these

$$\tilde{g}^{-1}\partial_{+}\tilde{g}=\tilde{g}^{-1}\partial_{-}\tilde{g}\Rightarrow \mathsf{D3}$$
 branes in PCM

D-branes and SU(2) λ -model limits

Analytic Continuation + PL limit Sketch: write b.c.'s in terms of P, Q and use of canonical transformation to relate to p, q of η-model. Rewrite in terms auto-morphism gluing of right invariant forms:

$$\mathbf{R}_{+}^{i} = \mathbb{R}^{i}{}_{k}\mathbf{R}_{-}^{k} \quad \mathbb{R} = \mathbb{O}_{+}^{-1}\mathbb{O}_{-} \quad \mathbb{O}_{\pm} = \frac{1}{1 \pm \eta \mathcal{R}}$$

D3 brane with world volume flux in η -PCM

Asymmetric λ -model and D-branes

Powerful technique exposes subtle branes in non-rational CFT

$$ds^{2} = k \frac{1 + \lambda^{2}}{1 - \lambda^{2}} \frac{d\xi d\bar{\xi}}{1 + |\xi|^{2}} + \frac{\lambda}{1 - \lambda^{2}} \frac{d\xi^{2} + d\bar{\xi}^{2}}{1 + |\xi|^{2}}$$

Find integrable D-branes:

▶ D1 hairpins $\partial_{\tau}(\xi - \bar{\xi}) = 0$ and $\partial_{\sigma}(\xi - \bar{\xi}) = 0$

- ▶ **D0** living at the tip $\partial_{\tau}\xi = \partial_{\tau}\bar{\xi} = 0$, $\xi = \bar{\xi} = 0$
- ▶ D2 with world volume gauge field

Exploit for superstring Miramontes, Hollowood, Schmidtt?

Conclusions

Swansea University Prifysgol Abertawe

www.swansea.ac.uk

Conclusions and Open Questions

- Rich interplay between integrable models and generalised notions of duality
- Starting to flesh out a surprisingly wide landscape of integrable theories
- Elegant interplay of open-systems and integrability can be used to probe aspects of Duality

Open Questions

- Can we expand the integrable landscape using a duality web e.g. FZZ, Matrix model, level-rank, bosonisation
- Exhaust the full landscape of integrable NLSM? What is the overarching structure
- Continue progress in quantisation
- ▶ Integrable models to verify all orders validity of PL in α' , g_s ?
- More crunch about how to exploit this holography
- M-theoretic implications?

Special thanks to Riccardo, Yolanda, Falk and Luis for a terrific meeting

Appendix

Swansea University Prifysgol Abertawe

www.swansea.ac.uk

• Generalised λ models, symmetries, S-matrix and quantisation

Appadu, Hollowood, Price, DT [1706.05322,1802.06016]

Generalised λ & $yB-\lambda$ Theories

Sfetsos Procedure can be generalised by replacing PCM:

$$kS_{WZW}[g] + S[\tilde{g}] = \int Tr(\tilde{g}^{-1}\partial_{+}g\Theta\tilde{g}^{-1}\partial_{-}g)$$

 $\triangleright \lambda$ now a matrix Λ :

$$S_{\lambda} = kS_{WZW} + \frac{k}{2\pi} \int Tr(g^{-1}\partial_{+}g\frac{1}{\Lambda^{-1} + Ad_{g}}\partial_{-}gg^{-1})$$

$$\Lambda = 1 + \mathbf{k}^{-1}\Theta$$

▶ Idea: if Θ defined integrable PCM, Λ can define an integrable theory

Generalised λ & yB- λ Theories for SU(2)

λ -XXZ Model

$$\Theta = \operatorname{diag}(\boldsymbol{\xi}^{-1}, \boldsymbol{\xi}^{-1}, \boldsymbol{\lambda}^{-1})$$

Trigonometric Lax

$$\mathcal{L}_{\sigma} = f_{+}[z]^{\alpha}\mathcal{J}_{+}^{\alpha}T^{\alpha} - f_{-}[z]^{\alpha}\mathcal{J}_{-}^{\alpha}T^{\alpha}$$

RG invariant

$$\gamma'^{2} = \frac{k^{2}}{4} \frac{(1 - \xi^{2})(1 - \lambda)^{2}}{\lambda^{2} - \xi^{2}}$$

λ -yB Model

$$\Theta = I + \frac{1}{kt} (1 - \eta \mathcal{R})^{-1}$$

Rational Lax

$$\mathcal{L}_{\sigma} = (c_{+} + d\mathcal{R})\mathcal{J}_{+} + (c_{-} + d\mathcal{R})\mathcal{J}_{-}$$

RG invariant

$$\Sigma = \frac{2\pi\eta\lambda}{k(1-\lambda)}$$

"Non ultra-local" i.e. central term in current algebra

$$\{\mathcal{J}_{\pm}^{a}(\mathbf{x}),\mathcal{J}_{\pm}^{b}(\mathbf{y})\} = f_{ab}^{c}\mathcal{J}_{\pm}^{c}(\mathbf{x})\delta_{xy} \pm \frac{k}{2\pi}\delta^{ab}\delta'_{xy}$$

Classical Symmetries

 Expand monodromy to find symmetries but need to determine expansion points!

$$T(z) = P \exp\left(-\int \mathcal{L}_{\sigma}(z)\right)$$

Determine Maillet r/s algebra

$$\{\mathcal{L}_{\sigma}^{\underline{1}}, \mathcal{L}_{\sigma}^{\underline{2}}\} = [r(z_1, z_2), \mathcal{L}_{\sigma}^{\underline{1}} + \mathcal{L}_{\sigma}^{\underline{2}}]\delta_{12} + [s(z_1, z_2), \mathcal{L}_{\sigma}^{\underline{1}} - \mathcal{L}_{\sigma}^{\underline{2}}]\delta_{12} - 2s(z_1, z_2)\delta'_{12}$$

▶ Locate special points z_* where $\lim_{\epsilon \to 0} r(z_*, z_* + \epsilon) = finite$

Charges and Symmetries

- Special points associated to Quantum Group Symmetries
- e.g. For λYB model at $c(z_*) = i d(z_*)$ we find

$$\begin{split} \mathsf{Q}^3 \sim \int \mathcal{J}_0^3 \;, \quad \mathsf{Q}^\pm \sim \int (\mathcal{J}_0^1 \pm i \mathcal{J}_0^2) \exp\left[-i \Sigma \int_{-\infty}^{\pm x} \mathcal{J}_0^3 (\pm y) dy\right] \\ q = \exp\left(\frac{2\pi \eta \lambda}{k(1-\lambda)}\right) = \mathsf{e}^\Sigma \quad \text{Homogenous Gradation} \end{split}$$

- ▶ For λXXZ model similar with $q = \exp[\pi \sqrt{\gamma'^2}]$ Principal Gradation
- QG parameters are RG invariant
- Second quantum group point given by KM currents with

$$q'_{cl} = \exp\left(\frac{i\pi}{k}\right)$$

Exact S-Matrix

Based on symmetries, limits and RG behaviour, we find conjectured form for S-matrices using known blocks

 $ightharpoonup \lambda$ -XXZ Model in UV Safe Domain $\gamma'^2 < 0$ Bernard LeClair

$$S_{\lambda - XXZ} = S_{SG}(\theta, \gamma') \otimes S_{RSOS}^{(k)}(\theta)$$

λ-XXZ Model Other Domain (periodic in rapidity)

$$S_{\lambda - XXZ} = S_p(\theta, \Sigma) \otimes S_{RSOS}^{(k)}(\theta)$$

λ-YB Model (periodic in rapidity, parity broken)

$$S_{\lambda-XXZ} = S_h(\theta, \Sigma) \otimes S_{RSOS}^{(k)}(\theta)$$

'Proving' S-matrix I

- \blacktriangleright Non-ultra-local i.e. δ' makes conventional techniques (QISM) inapplicable
- ► Alleviation Faddeev-Reshetikhin takes a limit, modifies UV but same IR properties

$$k o 0 \; , \quad rac{k}{\xi} \; , rac{k}{\lambda} \; {\sf fixed}$$

- In this limit the Lax connection becomes ultra-local ($s(z,w) \to 0$) and can be regularised, and quantised, on a lattice
- Obtain a lattice theory, XXZ anisotropic spin chain.

$$H_{\frac{1}{2}} = \sum_{n=1}^{N} \left(\sigma_n^1 \sigma_{n+1}^1 + \sigma_n^2 \sigma_{n+1}^2 + \cos \gamma \sigma_n^3 \sigma_{n+1}^3 \right)$$

• Actually need a spin $S = \frac{k}{2}$ chain and identify

$$\gamma = \frac{\pi}{\gamma'} - \mathbf{k}$$

'Proving' S-matrix II

▶ Ground state using TBA Kirillov-Reshetikhin find Dirac Sea dominated by k-Bethe strings whose density $\rho(z)$ obeys integral equation

$$\rho(z) + \rho_h(z) + \frac{1}{\pi} \int K(z - y) \rho(y) dy = \epsilon(z)$$

- ▶ Holes with density ρ_h are excitations above the ground state
- Amazing fact, these excitations scatter relativistically with a kernel

$$\tilde{\textit{K}}(\textit{z}) = \frac{\textit{d}}{\textit{dz}} \textit{LogS}(\textit{z}) = \int_{0}^{\infty} \cos(\textit{z}\omega) \left(\coth(\textit{k}\omega) + \coth(\gamma'\omega) \right) \tanh \pi\omega$$

▶ This corresponds exactly to the S-matrix of the λ -XXZ Model

Appendix: S-matrix Technology

Rapidity

$$E = m \cosh \theta$$
, $P = m \sinh \theta$

Axioms:

- 1. Factorization 2-body factorisation, no particle production
- 2. Analyticity. Only poles along the imaginary axis $0 < \mathit{Im}\theta < \pi$ associated to stable bound states.
- 3. Hermitian analyticity

$$S_{ij}^{kl}(\theta^*)^* = S_{kl}^{ij}(-\theta)$$
.

4. Unitarity

$$\sum_{kl} S_{ij}^{kl}(\theta) S_{mn}^{kl}(\theta)^* = \delta_{im} \delta_{jn} , \qquad \theta \in \mathbb{R} .$$

Crossing

$$S_{ij}^{kl}(\theta) = \mathcal{C}_{kk'} S_{k'i}^{lj'}(i\pi - \theta) \mathcal{C}_{j'j}^{-1} = S_{ki}^{lj}(i\pi - \theta) ,$$

where C is the charge conjugation matrix.

Appendix: Gradation I

$$[H_i, E_j] = a_{ij}E_j, \quad [H_i, F_j] = -a_{ij}F_j, \quad [E_i, F_j] = \delta_{ij}H_j$$

Generalised Cartan matrix a_{ij} has off diagonal elements equal -2.

 $K=H_0+H_1$ is central. K=0, i.e. centreless representations $\widehat{\mathfrak{su}(2)}$ becomes the loop algebra. Reps are the tensor of an $\mathfrak{su}(2)$ rep and functions of a variable z. Gradation is the relative action in $\mathfrak{su}(2)$ space and z-space.

homogenous gradation

$$E_1 = T^+, \quad F_1 = T^-, \quad E_0 = z^2 T^-, \quad F_0 = z^{-2} T^+, \quad H_1 = -H_0 = T^3$$

. principal gradation

$$E_1 = zT^+, \quad F_1 = z^{-1}T^-, \quad E_0 = zT^-, \quad F_0 = z^{-1}T^+, \quad H_1 = -H_0 = T^3$$

Appendix: Homogenous Gradation

Figure: The charges and their grades for the expansion of the monodromy around the pair of special points $z=\pm i\eta$. The blue/red and positive/negative graded charges are associated to $\pm i\eta$, respectively. The red and blue charges generate the affine quantum group in homogenous gradation and all the other charges are obtained by repeated Poisson brackets of these charges.

Appendix: Principal Gradation

$$\widehat{\mathfrak{su}(2)}_{\it p}.$$

Figure: The charges and their grades for the expansion of the monodromy around the pair of special points $z=\pm\infty$ (or $0,\infty$ with a multiplicative spectral parameter). The blue/red and positive/negative graded charges are associated to $\pm\infty$, respectively. The red and blue charges generate the affine quantum group in principal gradation and all the other charges are obtained by repeated Poisson brackets of these charges.

RG in **yB**- λ model

Figure: The RG flow of the YB lambda model (flows towards the IR). The WZW fixed point is the blue dot in the middle. The red curved is an example of a cyclic trajectory which has a jump from $\eta=+\infty$ to $-\infty$ at $\lambda=0$ and a jump from $\lambda=-\infty$ to $\lambda=+\infty$.

RG in η - λ model

Figure: The RG flow (to the IR) of the XXZ lambda model. The WZW fixed point is identified by the blue blob. The blue line is a line of UV fixed points. The green curve is a UV safe trajectory that has $\gamma' \in \mathbb{R}$. The red curve is a cyclic RG trajectory with $\gamma' = i\sigma$, $\sigma \in \mathbb{R}$. The trajectory has a jump in the coupling λ from $-\infty$ to ∞ , but is continuous in $1/\lambda$.

Contents

ullet Quantum aspects and resurgence of the η model

Demulder, Dorigoni, DT [1604.07851]