

Target group: J.P. Ramos, S. Rothe, D. Leimbach, J.
Ballof, F. B. Pamies, T. Stora, E. Barbero, B. Crepieux
Beam manipulation: T. Giles, S. Warren
RILIS: B. Marsh, K. Chrysalidis, S. Wilkins, C. Granados
ISOLTRAP: M. Mongeot, J. Karthein
SCK-CEN: D. Houngbo, L. Popescu, M. Dierckx
TRIUMF: L. Egoriti, A. Gottberg

84th ISOLDE Collaboration Committee meeting 19th of March 2019

Results from tests with the new p2n converter

Simulations and concepts

Offline developments

Online run

Brings relatively high purity neutron-induced fission fragments

Collaboration started to design two p2n-converters:

- Improve the one of ISOLDE
- **Design one for TRIUMF ISAC**

84th ISOLDE Collaboration Committee meeting

Concept history

Problem: scattered protons

isotope intensity loss (70-80%)

Main ideas:

- Thick converter reduce "proton cone"
- Short target and shifted (annular) – avoid the proton scattering zone

KU LEUVEN

J. P. Ramos | 19th of March 2019

Standard converter

Simple prototype was designed and tested

Converter optimization has two directions:

Low yields but

very high purity

- Avoid as much as possible the scattered protons for low proton flux
- Have the converter as close as possible to the 2000 °C target for high neutron flux 84th ISOLDE Collaboration Committee meeting

Project management

Converter is very relevant:

- 53 INTC documents where p2nconverter is mentioned (up to March 2018)
- 10/83 INTC documents for 2016/2017
 where p2n-converter is requested

Project board:

Person	Affiliation	Role
R. Catherall	CERN (EN/STI)	Chairperson/funding/expertise
G. Neyens	CERN (EP/SME)	Users representative
K. Johnston	CERN (EP/SME)	Users representative
T. Stora	CERN (EN/STI)	Technical expert
A.P. Bernardes	CERN (EN/STI)	Safety expert
A. Dorsival	CERN (HSE/RP)	Radioprotection expert
J.P. Ramos	CERN (EN/STI)	Project responsible/secretary
EN KU LEUVEN J. P. Ramos 19th of March 2019		

INCLEAR AND RADIATION PHYSICS 84th ISOLDE Collaboration Committee meeting

3 boards (project steering and reporting):

- 20th March 2018
- 12th June 2018
- 25th October 2018
- Last board (soon)

This project used:

OPense
cern.ch/opense

Scientific project management framework

For development

Funding		
(resources)	EN/STI-RBS	_
Users	EP/SME (representing EP/UIS)	
Regulators	HSE/RP and ISOLDE safety	_
Expertise (feasibility)	EN/STI-RBS	_
Project manager	Appointed project responsible	_
Strategic decisions		

Analysis – preferred solution

KU LEUVEN J. P. Ramos | 19th of March 2019

EN

The final concept

Sigratherm (graphite foam) thermal shielding

8

84th ISOLDE Collaboration Committee meeting J.P. Ramos, et al., EMIS 2019 Proceedings, to be published

Simulations and concept

Offline developments

Online run

Material acquirement

Oven tests

ST

84th ISOLDE Collaboration Committee meeting

Material compatibility

J. P. Ramos | 19th of March 2019 84th ISOLDE Collaboration Committee meeting

KU LEUVEN

ST

W not water cooled, but at >2000 °C)

<u>After (2200 °C – 16 h)</u> – no change

12 Use standard (tilted) UCx pellets

Online target ready

EN 🛸

S T

CÈRN

W ion source installed

KULEUVEN J. P. Ramos | 19th of March 2019

Online run

Simulations and concept

Online run

Online run

Run split in two

First part:

- Proton scan
- Cs yields
- Rb yields

EN 🛸

Second part (laser ionized)

- Zinc
- Gallium
- Indium
- High proton intensity tests

Measure full isotope chains

Protons on target and on converter

<u>Gamma detector was</u> <u>broken – only beta</u> <u>detector was available</u>

FCup and ISOLTRAP

Laser on/off

Proton scan

Converter

Target

BTY.DVT324

σ 0.038

- 3.8...

J. P. Ramos | 19th of March 2019 84th ISOLDE Collaboration Committee meeting

J.P. Ramos, et al., to be published.

Rb yields

Target 2000 °C (850A)

W ion source ~2150 °C (255A)

ISOLTRAP - Cs/Ba ~ 10, Cs/La > 100

T_b = 671 °C T_{P=1Pa} = 145 °C

J.P. Ramos, et al., to be published.

Release properties

- Diffusion should not be affected (same material, same pellets)
- Effusion is affected (larger volume, annular shape)

- Temperature inhomogeneities of 200 to 300 °C
- Target volume is 60 cm³

- No cold spots
- Large target volume (200 cm³)
- Anular target

2nd part of the run

Target heating issues:
Voltage increased continuously (container failure sign)
Decreased target current to keep voltage stable (same power)
Target temperature was heavily influenced

Another large target was irradiated and tested at MEDICIS

Failure of the target oven (brough to >2300 °C)

Can affect the reliability of the yields taken after (laser ionized Ga, In, Zn)

Laser enhancement was only x4.3 (expected 40-50)! Optimization done on radioactive (peak)!

T_b = 2400 °C T_{P=1Pa} = 1037 °C

J.P. Ramos, et al., to be published.

84th ISOLDE Collaboration Committee meeting

J.P. Ramos, et al., to be published.

Target 1432 °C (655A)

W ion source ~2150 °C (255A)

Converter vs Target

Data still in analysis...

Only 4 data points taken Target was much degraded by then...

Example 75Zn (ISOLTRAP) 3.6E5 /µC (DB 5.6E7 /µC)

EN

Low yields on Zn

10.00 1.00 0.10 0.10 0.01 70 72 74 76 78 80 82 Rb Mass

$T_{b} = 907 \ ^{\circ}C$ $T_{P=1Pa} = 337 \ ^{\circ}C$

KU LEUVEN J. P. Ramos | 19th of March 2019

J.P. Ramos, et al., to be published.

First high power target - simulations

 KULEUVEN
 J. P. Ramos | 19th of March 2019
 24

 STI
 KULEUVEN
 34th ISOLDE Collaboration Committee meeting
 J.P. Ramos, et al., EMIS 2019 Proceedings, to be published

First high power target - data

J.P. Ramos, et al., to be published.

Conclusions (Outlook)

- Cs and Rb yields are high and match predictions
- In, Ga and Zn were taken at low temperatures (and less optimized RILIS conditions)
- The target oven needs additional development
 - Post-mortem analysis will be done (at PSI)
 - Already on-going by V. Samothrakis)
- First high power target of ISOLDE
 - Temperature needs to be adjusted if beam intensity changes
- Outlook:
 - Modular target personalized for user can maintain target yield but get a factor 4-10 in purity

KULEUVEN J. P. Ramos | 19th of March 2019

 Usage of ThC2 with converter material (for Cu, Ni, Fe, Co)

84th ISOLDE Collaboration Committee meeting

Modular converter – personalized for user. Example of purity driven converter:

Thank you!

Target group: J.P. Ramos, S. Rothe, D. Leimbach, J. Ballof, F.
B. Pamies, T. Stora, E. Barbero, B. Crepieux, V. Samothrakis
Beam manipulation: T. Giles, S. Warren
RILIS: B. Marsh, K. Chrysalidis, S. Wilkins, C. Granados
ISOLTRAP: M. Mongeot, J. Karthein
SCK-CEN: D. Houngbo, L. Popescu, M. Dierckx
TRIUMF: L. Egoriti, A. Gottberg
MEDICIS-Promed (SPES): M. Ballan, S. Marzari

This project used: OPEDSE cern.ch/opense Scientific project management framework

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654002

KU LEUVEN J. P. Ramos | 19th of March 2019