ISOLDE Collaboration Committee Meeting 19th March 2019

A Superconducting Recoil Separator for HIE-ISOLDE

I. Martel

University of Huelva

Recoil Separators

• • •

Measurement of reactions products \rightarrow main advantage when forward focussing recoils.

• Direct reactions, nucleon transfer in inverse kinematics, fusion-evaporation, Coulex (beam composition/ impurities),

HIE-ISOLDE

International Nuclear Physics Conference 2010 (INPC2010) Journal of Physics: Conference Series **312** (2011) 052010

IOP Publishing doi:10.1088/1742-6596/312/5/052010

The HIE-ISOLDE Project

Alexander Herlert and Yacine Kadi CERN, 1211 Geneva 23, Switzerland

E-mail: alexander.herlert@cern.ch

Figure 5. Isotopes requested by ISOLDE users for HIE-ISOLDE

 Table 17.1: Design parameters of dipole magnets.

Parameter	Value		
Number of magnets	6		
Peak field in centre [T]	1.2		
Allowed integrated field error	$\pm 5 \cdot 10^{-4}$		
Magnetic aperture [mm]	50		
Magnetic length [mm]	1414		
Bending radius [m]	1.8		
Bending angle [deg]	45		
Conductor dimensions [mm]	$\Box 10; \langle$		
Nominal current [A]	423		
Magnet resistance (20° C) [m Ω]	100		
Magnet inductance [mH]	113		
Cooling flow ($\Delta p = 10$ bars) [l/min]	23		

Design parameter	Value	
F_0 (MHz)	101.28	
β_{g} (%)	10.3	
$E_{\rm acc} ({\rm MV} {\rm m}^{-1}) = V_0 / L_a$	6	b. ne
$L_{\rm a}$ (m)	0.3	
$R_{\rm shunt}/Q_0$ (Ω)	550	
$E_{\rm peak}/E_{\rm acc}$	5.6	
$H_{\rm peak}/E_{\rm acc}~({\rm G}~({\rm MV}~{\rm m}^{-1})^{-1})$	100	
Q_0 (at 6 MV m ⁻¹ , $P = 10$ W)	5×10^8	
$\widetilde{\Gamma} = R_{\rm s} Q_0 \left(\Omega \right)$	31	
$U/E_{\rm acc}^2 ({\rm mJ}({\rm MV}{\rm m}^{-1})^{-2})$	210	90 mm
<i>T</i> (K)	4.5	

The need of recoil separators at HIE-ISOLDE: the HIFI Project

March 10-11, 2011 | Spectrometer at HIE-ISOLDE, Workshop, Lund (Sweden)

Request from Letters of Intend = 43%

- identify beam-like particles
- light particle spectrometer
- MINIBALL, SEC

Other set-ups

- GASPARD
- ACTAR
- Fission fragments
- ISS: challenging due to fringe fields

Beams

Full range of isotopes available at HIE-ISOLDE (Li to Ra)

Coupling to other particle detectors

- SEC, MINIBALL, ISS
- Plunger (under construction)
- e-spectrometer (SAGE-type)

Types

Ray-tracing spectrometer: VAMOS, PRISMA... Mass spectrometer: EMMA, MARA, RITU ...

Physics cases

- Direct reactions studies, Transfer reactions Energy: 5.5 - 10 MeV/u Intensities: > 10⁵/s Small scattering angles around 0° Event-by-event PID Identification of heavy transfer product Reactions of beam contaminants Angular distribution Fusion-evaration reactions with target / carrier Beam composition for normalisation
- Coulomb excitation
 - 4 5.5 MeV/u, Intensities: > 10^2 /s ... 10^8 /s A and Z determination for scattered particles using
 - large area Bragg detector
 - Beam composition for normalisation
- Deep inelastic reactions
- Fusion-evaporation reactions
- Astrophysics

Coordinators: Olof Tengblad; Wilton Catford; Joakim Cederkäll

Specifications of the recoil separator

Physics				
E [MeV/u]	0.45	10		
А	7	234		
A/Q	2.5	4.5		
P [MeV/c]	1	30		
Βρ [Tm]	0.25	2.16		

Timing

Slow extraction from EBIS useful for TOF Linac f = 101.28 MHz \rightarrow rebuncher down to ~ 10 MHz.

Intensity

10⁵/s for heavy beams, but 10⁹/s instantaneous rate. \rightarrow debuncher

Multi-harmonic buncher (M. Fraiser et al. LINAC2014, THPP030)

Size of the HIE-ISOLDE hall

<u>Separator</u>

- Rejection: ~10⁻¹²
- 100 % transport efficiency
- Mass resolution > 1/300
- Large acceptance ~ 100 mrad
- Gas-filled mode

Focal plane detector

- Position sensitivity ~ 1 mrad (scattering angle)
- Particle identification (A, Z)
- Eloss, Time of Flight, Pulse shape
- Time resolution ~ ns
- Energy resolution < 100 keV
- 100% efficiency

Simulations

EMMA, MARA, PRISMA

- ⁹Li(d,n)¹⁰Be
- ²²Mg(d,n)²³Al
- ⁶⁸Ni(d,n)⁶⁹Ni
- ¹³²Sn(d,p)¹³³Sn
- ¹⁸⁴Hg(3He,n)¹⁸⁶Pb

Traditional system based on warm magnets

- Simple and experienced.
- Little space available but could fit.

- ToF space limitations. Dt [s/m] ~ 15/A
- Not easy to move from one line to the other.

Layout for MINIBALL

Courtesy of J. Cederkall

Proposal for a design study using SC elements

- Explore new design concept using SC coils and RF cavities.
- Produce a compact, efficient and high-selectivity recoil separator.
- Design study including beam dynamics, mechanics, size, weight, efficiency, selectivity, construction and running costs.

SC solenoids

- Combined function magnets for bending and focussing
- High fields ~ 8 T

- High gradients ~ 10 MV/m
- Rebuncher ~ 10 MHz

Hight temperature SC

FFAG

(EMMA project at Daresbury Laboratory)

Classical design concept

Ring design concept

Example – Combined function magnets

"Design of a superconducting Gantry cryostat" C. Bontoiu, et al., IPAC2015, doi:10.18429/JACoW-IPAC2015-WEPMN051

- Design study of a SC Gantry for protontherapy ٠
- Protons of <u>175 MeV ± 20%</u> (large acceptance); R= 2.5 m ٠
- Bmax = 2.195 T •
- Dipoles $B\rho = 5.47$ Tm ٠
- Quads gradient = 90 T/m ٠
- Small magnets Length x Diameter ~ 20 cm x 15 cm •
- 36 magnets, FFAG ٠

(b)

Φ= 15 cm

Gantry layout

Example – Ring concept

Example- Classical design concept

Reduction in size of dipoles and quadrupoles \sim factor 5.

Summary and conclusions

- Design study of a recoil separator using SC coils and RF cavities to produce a compact, efficient and high-selectivity instrument. Different options to be considered including combinations with warm magnets in ring and classical configurations.
- Proposal for funding to EU under discussion (ERC, SINERGY, etc) within the international collaboration.
- Studentship U. Liverpool CERN advertised.
- Collaboration meeting at Liverpool end of April/beginning of May.

Request to ISCC: renewed support for HiFi and the SC design study of the recoil fragment separator.

Physics with RS at HIE-ISOLDE

Complement experiments at SEC, MINIBALL and ISS.

E ~ 0.5 – 10 MeV/u

Recoil separation: direct reactions, transfer, fusion-evaporation,...

SEC: Haloes, astrophysics, & spectroscopic factors at the drip lines .

¹⁷F(p,γ) @ 0.5 MeV/u inverse kinematics D. W. Bardayan, et al. EPJ

Z = 56A, 2009, 10737-8 Z = 34N=56

N = 34

Reaction dynamics. •

Z=88

Astrophysics.

N=88

²³⁴Ra(d, n)²³⁵Ra @ 10 MeV/u inverse kinematics

N=134

K.M. Lynch et al., PRC 97,024309 (2018)

MINIBALL & ISS

Shell evolution, closures, shape coexistence, deformation & "peershapes"

Spectrometer design for HIE-ISOLDE

Gry Tveten Advisors: Joakim Cederkall (Lund University) and Sunniva Siem (University of Oslo)

EMMA@TRIUMF

B. Davids, C.N. Davids / Nuclear Instruments and Methods in Physics Research A 544 (2005) 565-576

MARA @ JYFL

PRISMA@LNL

SIMULATIONS

¹³²Sn(d,p)¹³³Sn

SIMULATIONS Test cases ⁹Li(d,n)¹⁰Be ²²Mg(d,n)²³Al ⁶⁸Ni(d,n)⁶⁹Ni ¹³²Sn(d,p)¹³³Sn ¹⁸⁴Hg(3He,n)¹⁸⁶Pb

Courtesy of J. Cederkall

The TRITRON: Separated Sector Cyclotron

The TRITRON. U. TRINKS (1990)

Accelerator Laboratory of both Universities of Munich, D-85748 Garching, Germany.

- Superconducting separated-orbit cyclotron.
- Injection of from the Munich MP-tandem.

- Ion beam guided by 241 SC channel magnets
- AFG along fixed spiral orbits 40 mm width.
- 12 straight sectors per orbit.
- 12 intermediate gaps: SC cavities(170 MHz) & beam diagnostics, extraction, etc.

The TRITRON - p	roject: gen	eral design data	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-
TRITRON system	ı		Accelerating structures	
Injector	MP-Tandem (14MV)		Number of cavities	
Energy gain factor	~ 4.9		RF-frequency	170 MH
Injection radius	0.66 m		Harmonic numbers	714 mHz
Extraction radius	1.45 m		Total radial length	1233 mm
Turn separation	m separation 40 mm		Radial gap length	~ 0.85 m
Number of turns	20		gap width: injection/	62 mm /
	1000		extraction	128 mm
			Aperture of the beam holes	13 mm
			Maximum gap voltage (design)	0.53 MV
downato			Maximum electric field (design)	4.7 MV/m
Magnets			Peak field to	< 1.5
humber of magnet sec	tors	12	maximum gap field	
humber of magnet cha	nnels/sector	20 (19)	Unloaded quality factor	500 000 000
Rending angle per cha	nnel	30°	Dissipated heat per cavity	0 99
Sector angle		20		
Bending radius		430 mm 942 mm		
Increment of bending r	adius per turn	29.94 mm		
Geometrical aperture		10 mm		
Maximum magnetic int	duction:		Cryostat	
sector char	nels	1.7 T		3.6 m
90° - injecti	on channel	2.4 T	Diameter	~ 3 m
Normalized radial grad	ients	3.6 m ⁻¹ bzw4.9 m ⁻¹	Height	7 000 kg
Hormanice of Fudian grou	the second of	12.16	Befrigerator power at 4.6 K	155 W
Radial betatron oscilla	tion number	0.8 - 1.7	Reingerater Parte	
Axial betatron oscillati	on number	0.2		

Direct measurements of (p, γ) **cross sections at astrophysical energies using radioactive beams and the Daresbury Recoil Separator** D. W. Bardayan, et al. *European Physical Journal A, 2009.* DOI: 10.1140/epja/i2008-10737-8 HRIBF (Oak Ridge) using the Daresbury Recoil Separator (DRS)

Explosive nucleosynthesis/X-ray bursts/Supernovae

March 10-11, 2011 | Spectrometer at HIE-ISOLDE, Workshop, Lund; Courtesy of Wilton Catford

