# Tension from Clusters and CMB resolved ?!?



### Laura Salvati

in collaboration with Marian Douspis, Nabila Aghanim and Arif Babul





European Research Council



# Outline

- Galaxy Clusters
  - thermal Sunyaev-Zeldovich effect
  - Planck results on cosmological parameters
    - Discrepancy with CMB primary anisotropies results
- Combination of tSZ probes: cosmological constraints
  - LCDM and extensions to standard model
  - Mass bias
    - Mass redshift variation
  - Comparison with CMB results

Results based on:

- LS, Aghanim, Douspis
   A&A 614 (2018) A13
- LS, Douspis, Ritz, Aghanim, Babul A&A 626, A27 (2019)



### Introduction

### **Galaxy Clusters**

Largest structures gravitationally bound in the Universe

Matter density

Strong dependence on cosmological parameters

Variance of matter fluctuations

# Evolution of clusters with **mass** and **redshift** is a sensitive cosmological probe



Millennium Simulation Project, https://wwwmpa.mpa-garching.mpg.de/galform/virgo/millennium/

- Multi-component systems: dark matter and baryonic matter
- Multiple wavelengths-probes observations

 $\Omega_m, \sigma_8$ 



http://sci.esa.int/planck/47695-the-coma-cluster/

#### Laura Salvati



# thermal Sunyaev-Zeldovich effect

Sunyaev and Zeldovich, Astrophys. Space Sci. 7 (1970) 20

#### Interaction between CMB photons and hot gas in clusters: Astroph Inverse Compton Scattering between CMB photons and hot electrons



#### Laura Salvati



### tSZ probes: Planck results



### tSZ probes: Planck results



### tSZ Number Counts + Power Spectrum

#### **Combination of tSZ Number Counts and Power Spectrum**

- Constraints on cosmological parameters
  - Standard model of cosmology
  - Extensions: massive neutrinos, EoS for Dark Energy
- Comparison with CMB primary anisotropies constraints

#### LS, Aghanim, Douspis A&A 614 (2018) A13



# **Dataset - Method**

#### LS, Aghanim, Douspis A&A 614 (2018) A13



Laura Salvati

## **Results**



#### Laura Salvati

### Mass bias

 $(1-b)\simeq 0.6$  too low!



Gas fraction to evaluate mass bias



Eckert et al, A&A 621, A40 (2019)

**EDSU2020** 

Salvati et al, A&A 614 (2018) A13



#### LS, Douspis, Ritz, Aghanim, Mass bias: M-z evolution Babul. A&A 626, A27 (2019)

Same approach:

- tSZ NC + tSZ PS
- CCCP + Tinker
- Cosmological + Scaling Relation parameters



#### **Mass-redshift Parametrisation**

$$(1-b)_{\text{var}} = (1-\mathcal{B}) \cdot \left(\frac{M}{M_*}\right)^{\alpha_b} \cdot \left(\frac{1+z}{1+z_*}\right)^{\beta_b}$$

$$4.82 \cdot 10^{14} M_{\odot}$$

$$0.22$$

$$(1-\beta)_{\text{mean mass}}$$

$$(1-\beta)_{\text{mean mass}$$

$$(1-\beta)_{\text{mean mass}}$$

$$(1-\beta)_{\text{mean mass}}$$

$$(1-\beta)_{\text{mean mass}}$$



#### Laura Salvati

### Robustness tests Results

LS, Douspis, Ritz, Aghanim, Babul. A&A 626, A27 (2019)



| Flat prior [0.  | 6,1.0]                           |                                  |                                  |               |
|-----------------|----------------------------------|----------------------------------|----------------------------------|---------------|
| $\Omega_m$      | $\sigma_8$                       | $(1-\mathcal{B})$                | $lpha_b$                         | $\beta_b$     |
| $0.330\pm0.038$ | $0.753\substack{+0.026\\-0.031}$ | $0.756\substack{+0.056\\-0.083}$ | $0.005\substack{+0.029\\-0.026}$ | $0.10\pm0.16$ |
|                 |                                  |                                  |                                  |               |

#### 2. Effect of M-z parametrisation



#### **Redshift bins**

|                   | bin 1    | bin $2$    | bin $3$ | $(1-b)_2$      |
|-------------------|----------|------------|---------|----------------|
|                   | [0, 0.2] | [0.2, 0.5] | [0.5,1] |                |
| <br>CCCP          | 6        | 11         | 1       | $0.78\pm0.092$ |
| PSZ2 cosmo sample | 209      | 200        | 23      |                |

| $(1 - b)_1$     | $(1-b)_2$         | $(1-b)_3$         |
|-----------------|-------------------|-------------------|
| $0.655\pm0.078$ | $0.775 \pm 0.092$ | $0.751 \pm 0.095$ |

#### Laura Salvati



### Robustness tests Results



#### 3. Selection effects

#### **Results from other analyses**



12 13



### **Conclusions & Perspectives**





### **Conclusions & Perspectives**



Thank you for your attention

13(13)



