Hubble Constant at the Late Universe

Sherry Suyu

Max Planck Institute for Astrophysics
Technical University of Munich
Academia Sinica Institute of Astronomy and Astrophysics

March 9, 2020
3rd World Summit on Exploring
the Dark Side of the Universe

Hubble tension

Hubble constant H_0

- age, size of the Universe
- expansion rate: $v = H_0$ d

Tension? New physics?

Need Independent methods to overcome systematics, especially the unknown unknowns

[Riess et al. 2019]

Distance Ladder

ladder to reach objects in Hubble flow ($v_{peculiar} << v_{Hubble} = H_0 d$)

1:Geometry→Cepheids

2: Cepheids→SN la

3:SN la \rightarrow z,H₀

[slide material courtesy of Adam Riess]

Distance Ladder

ladder to reach objects in Hubble flow ($v_{peculiar} << v_{Hubble} = H_0 d$)

[slide material courtesy of Adam Riess]

Distance Ladder

ladder to reach objects in Hubble flow ($v_{peculiar} << v_{Hubble} = H_0 d$)

1:Geometry→Cepheids

2: Cepheids→SN la

3:SN la \rightarrow z,H₀

[slide material courtesy of Adam Riess]

Distance Ladder Measurements

- Hubble Space Telescope Key Project [Freedman et al. 2001]
 - $H_0 = 72 \pm 8 \text{ km s}^{-1} \text{ Mpc}^{-1} (10\% \text{ uncertainty})$
 - resolving multi-decade "factor-of-two" controversy
- Carnegie Hubble Program [Freedman et al. 2012]
 - $H_0 = 74.3 \pm 2.1 \text{ km s}^{-1} \text{ Mpc}^{-1} (2.8\% \text{ uncertainty})$
- Supernovae, H₀ for the dark energy Equation of State "SH0ES" project [Riess et al. 2019]
 - $H_0 = 74.03 \pm 1.42 \text{ km s}^{-1} \text{ Mpc}^{-1} (1.9\% \text{ uncertainty})$
- Carnegie-Chicago Hubble Program [Beaton et al. 2016]
 - aim 3% precision in H_0 via independent route with RR Lyrae, the tip of red giant branch, SN Ia
 - H_0 = 69.6 ± 0.8 (stat) ± 1.7 (sys) km s⁻¹ Mpc⁻¹ [Freedman et al. 2019, 2020]

Megamasers

Direct distance measurement without any calibration on distance ladder

1. Distance : $D = r / \Delta\theta$ (for D >> r)

2. Gravitational acceleration in a circular orbit : $a = V_0^2 / r$ $r = V_0^2 / a$

$$D = V_0^2 / a \Delta \theta$$

$$D = V_0^2 \sin i / a \Delta \theta$$

D

[slide material courtesy of C.-Y. Kuo]

Megamasers

 $D = V_0^2 \sin i / a \Delta \theta$

How to measure V_0 , $\Delta\theta$, a and i?

Megamaser Cosmology Project

$$H_0 = 73.9 \pm 3.0$$

km s⁻¹ Mpc⁻¹

- assuming uncertainty of 250 km/s for peculiar motions
- peculiar motion is currently the dominant source of uncertainty

[Pesce et al. 2020]

Standard Siren

Gravitational wave form → luminosity distance D Measure recessional velocity of EM counterpart v

 $H_0 = v / D$

[Image credit: M. Garlick]

GW170817: First measurement of H₀

[LIGO, VIRGO, 1M2H, DES, DLT40, LCO, VINROUGE, MASTER collaborations, 2017]

Strong gravitational lensing

Cosmology with time delays

Cosmology with time delays

Cosmology with time delays

HE0435-1223

[Suyu et al. 2017]

Advantages:

Time delay:

$$t = \frac{1}{c} D_{\Delta t} \phi_{lens}$$

$$\uparrow \qquad \uparrow$$

$$Time-delay \\ distance: \\ D_{\Delta t} \propto \frac{1}{H_0}$$
 Obtain from lens mass model

For cosmography, need:

- (1) time delays
- (2) lens mass model
- (3) mass along line of sight
- simple geometry & well-tested physics
- one-step physical measurement of a cosmological distance

H0LiCOW

H₀ Lenses in COSMOGRAIL's Wellspring

B1608+656

RXJ1131-1231

H₀ to <3.5% precision

HE0435-1223

WFI2033-4723

HE1104-1805

[Suyu et al. 2017]

H0LiCOWers

H0LiCOW: H₀ Lenses in COSMOGRAIL's Wellspring

Establish time-delay gravitational lenses as one of the best cosmological probes

H0LiCOW latest results

[Suyu et al. 2010]

[Suyu et al. 2013, 2014; Tewes et al. 2013]

[Wong et al. 2017; Rusu et al. 2017; Sluse et al. 2017; Bonvin et al. 2017]

part of extended sample [Birrer et al. 2019]

[Bonvin et al. 2019; Sluse et al. 2019; Rusu et al. 2019]

part of Keck AO sample of SHARP program [Chen et al. 2019]

H₀ from 6 strong lenses

Blind analysis to avoid confirmation bias

H₀ with 2.4% precision in flat ΛCDM

[Wong, Suyu, Chen et al. 2019]

Residual systematics?

No significant residual systematics detected wrt Einstein radii, effective radii, kinematic apertures

[Millon, Galan, Courbin et al. 2019; TDCOSMO I]

Residual systematics?

No significant residual systematics detected wrt external convergence

20

Residual systematics?

No significant residual systematics detected wrt mass model assumptions

[Millon, Galan, Courbin et al. 2019]

Weak trend with redshift

Weak trend (at 1.7σ) of H_0 wrt redshifts of lens

[Wong, Suyu, Chen et al. 2019; Millon, Galan, Courbin et al. 2019]

Tensions between Early and Late Universe

[credit: V. Bonvin]

[Verde, Treu, Riess 2019]

New quads imaged with HST

New lens systems discovered in DES, Pan-STARRS, SDSS, ATLAS:

[Shajib et al. 2018]

Strongly lensed supernova

SN Refsdal

iPTF16geu

[Goobar et al. 2017; image credit: NASA/ESA]

HOLISMOKES

Highly Optimised Lensing Investigations of Supernovae, Microlensing Objects, and Kinematics of Ellipticals and Spirals PI: S. Suyu

Lensed supernovae provide great opportunities for

1) Constraining the progenitor of Type Ia supernova single degenerate double degenerate

White dwarf (WD) accreting from non-degenerate companion

WDs merging

2) Measuring the expansion rate of our Universe

26

or

Summary

- Independent techniques for measuring H₀ are necessary for addressing the current H₀ tension
- Time-delay distances $D_{\Delta t}$ of each lensed quasar can be measured with uncertainties of ~5-8% including systematics
- From 6 lensed quasars in H0LiCOW, $H_0 = 73.3^{+1.7}_{-1.8}$ km/s/Mpc in flat Λ CDM, a 2.4% precision measurement independent of other probes
- New lensed quasar systems being discovered, observed and analysed as part of TDCOSMO
- HOLISMOKES: lensed supernovae to constrain supernova progenitors and cosmology
- Current and future surveys will have thousands of new time-delay lenses, providing an independent and competitive probe of cosmology